
 

Arabian Journal of Chemical and Environmental Research  

Vol. 13 Issue 1 (2026) 18–40 

 

 

 

ISSN : 2458-6544 © 2026 ;www.mocedes.org. All rights reserved. 

 

DFT - QSAR Model Generation of Pyrimidocarbazole Derivatives as 
Breast Cancer Inhibitors by the Genetic Algorithm and Multiple 

Linear Regression (GA- MLR) Method 
 

Abdulrahman Ibrahim Kubo1*, Hassan Garba Wafi1, Chika Attama1, 

Anthony E. Aiwonegbe2, Janet Hadi John1 and Saminu M.A.1 

1Department of Pure and Applied Chemistry, Adamawa State University, Mubi, Nigeria 
2Department of Chemistry, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria 

Corresponding Author Email: abdulrahmankuboibrahim@gmail.com, Phone number: +2348066225336 

 
Received 18 Sept 2025, Revised 21 Oct 2025, Accepted 22 Oct 2025 

 
 
Cited as: Kubo A.I., Wafi H.G., Attama C., Aiwonegbe A.E., John J.H. and Saminu M.A. (2026) DFT- QSAR Model 
Generation of Pyrimidocarbazole Derivatives as Breast Cancer Inhibitors by the Genetic Algorithm and Multiple 
Linear Regression (GA- MLR) method, Arab. J. Chem. Environ. Res. 13(1), 18-40 

Abstract: Cancer contributes to roughly 13% of global deaths each year, ranking among the top causes of 
mortality worldwide. In high-income countries, it is responsible for over 20% of all deaths, underscoring its 
significant impact. Among women, breast cancer is one of the most common long-term cancers and accounts 
for approximately 24% of all female cancer cases, making it a leading cause of cancer-related deaths. This 
study developed quantitative structure–activity relationship (QSAR) models using the Multiple Linear 
Regression combined with Genetic Function Approximation (MLR-GFA) approach. Among the models 
generated, Model 1 showed superior performance and was chosen for further analysis, displaying strong 
statistical metrics: R² = 0.9806, adjusted R² = 0.9767, SEE = 0.0548, MAE = 0.0511, Q2 (LOO) = 0.9714 and 
CCC = 0.9384. Molecular docking studies revealed high binding affinities between the compounds and the 
target receptor, ranging from (-28.715 to -30.308 kcal/mol). Notably, Compound 16 demonstrated the 
strongest binding affinity (-30.308 kcal/mol), followed by Compounds 30 (-29.721 kcal/mol), 21 (-29.648 
kcal/mol), 6 (-29.475 kcal/mol), and 27 (-28.715 kcal/mol). Drug-likeness and toxicity assessments using 
SwissADME and ProTox-3.0 confirmed the compounds favorable oral bioavailability profiles. These 
findings suggest that, with careful evaluation of their potential carcinogenic risks, the identified compounds 
hold promise as candidates for further clinical development. 
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1. Introduction 

Cancer is responsible for approximately 13% of global deaths annually, making it one of the leading 

causes of mortality worldwide (Mahdy et al., 2019). In high income countries, it accounts for over 

20% of all deaths, highlighting its significant relative impact. Targeted therapies for cancers such as 

breast cancer have been approved, offering more precise treatment options. These therapies work by 

interfering with specific molecules involved in tumor growth and progression, thereby limiting the 

adverse effects of traditional non selective chemotherapy and overcoming resistance often seen with 

existing anticancer drugs (Garber 2008). Cancer treatment encompasses several strategies, including 

the inhibition of angiogenesis an essential process for tumor development making it a promising 

therapeutic target (Kerbel, 2008, Titi et al., 2020). Breast cancer is one of the most prevalent long-

term cancers among women and remains a leading cause of cancer related deaths (Raja et al., 

2009), accounting for about 24% of all female cancer cases (Xiao et al., 2018). Common risk 

factors among breast cancer patients include older age, minimal or no breastfeeding, weight gain, 

late age at first childbirth, and sedentary lifestyle (Liu et al., 2018). Advancements in understanding 

cancers molecular mechanisms and pathways have significantly contributed to the discovery of new 

anticancer agents (Bhaumik et al., 2019; Bouslamti et al., 2023; Zafar et al., 2025). Personalized 

and targeted cancer therapies have emerged; however, these methods are often costly and not 

always effective, indicating an urgent need for alternative treatment approaches (Nagireddy et al., 

2019; Bouammali et al., 2024). To ensure the effectiveness of new drugs, their binding affinity to a 

specific therapeutic target must be thoroughly evaluated. DFT, QSAR and Docking analysis is a 

powerful tool in this regard, as it helps determine the drug’ ability to reach its target, produce the 

desired effect, and be metabolized within a suitable timeframe. This analysis also helps minimize 

the risk of failure in later stages of drug development (Kavallaris 2010; Faris et al., 2023; Salih et 

al., 2023; Alruwaili et al., 2025; Kadda et al., 2025; Pasha and Manojmouli et al., 2025). 

This study aims to explore the novel derivatives of pyrimidocarbazole with vigorous anticancer 

activity. It involves building a Quantitative Structure - Activity Relationship (QSAR) model to 

predict the anti-proliferative effects of these compounds, and performing molecular docking studies 

with the (3ERT) protein receptor to analyze drug target interactions. The ultimate goal is to discover 

effective and less toxic treatment options for breast cancer. 
 

2. Materials and methods 

2.1. Selection of compounds 

In this study, a dataset comprising 43 pyrimidocarbazole derivatives and their reported anticancer 

activities against breast cancer was obtained from the research conducted by Mohareb R.M and 
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colleagues (Mohreb et al., 2017). The anticancer activity data, originally expressed in IC₅₀ (µM), 

were converted to pIC₅₀ values using equation one. These compounds, along with their 

corresponding activities, are presented in Table 1; 

𝑝𝐼𝐶!" 	= 	−𝑙𝑜𝑔#"	(𝐼𝐶!" 	× 	10$%)     (1) 
 
 
2.2. Computational resources 

Several software tools were employed throughout this computational analysis. ChemDraw v12.1, 

Spartan 14 v1.1.0 and ICMpro Docking Software were used for molecular design, quantum 

calculations, and docking studies, respectively. The receptor-ligand interactions were further 

analyzed and visualized in both 2D and 3D using Discovery Studio software. The entire research 

was performed on an HP EliteBook laptop featuring a dual-core Intel processor at 2.5 GHz with 4 

GB of RAM, running on Windows 8. Additionally, online platforms such as SwissADME and 

ProTox-3 were used to predict drug-likeness and evaluate the ADMET profiles of the studied 

compounds (Isa et al., 2024; Abdulrahman & Ibrahim, 2024). 
 

2.3. Density functional theory  

For quantum chemical calculations, Density Functional Theory (DFT) was utilized using Spartan 

version 14. The molecular geometries of all 43 compounds were optimized using the (B3LYP) 

Becke’s three-parameter hybrid functional with the Lee-Yang-Parr correlation functional together 

with the 6-31G* basis set. This approach was used to determine the most stable conformations by 

identifying global minima on the potential energy surface (Yunusa et al., 2021). 
 

2.4. Molecular docking 

The docking simulations were conducted using ICMpro Docking Software, with the protein 

receptor (PDB ID: 3ERT) selected for assessing the binding poses of the small molecules under 

investigation. 
 

2.5. Drug-likeness and ADMET 

Accessible online tools such as SwissADMEand ProTox- 3.0 were also used to evaluate the drug-

likeness and toxicity characteristics of the compounds. 
 

3. Results and discussion 

3.1. QSAR Results 

FINAL GA-MLR MODEL RESULTS: 

MLR equation: 
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pIC50 = 14.33, (*SpMin2_Bhs) =-2.0132,(*JGI10) = -229.5961,(*SpMin6_Bhs) = +0.3874, 

(*ATSC4m) = +0.0003, (*JGI3) = -102.4387 

Internal Validation metrics using training set: 

Number of Training set datapoints: 31 

R2 = 0.9806, R2(Adjusted) = 0.9767, Standard Error of Estimation (SEE) = 0.0548, Q2(LOO) = 

0.9714, SDEP(LOO) = 0.0598, Scaled average Rm2(LOO) = 0.9602, Scaled delta Rm2 (LOO) = 

0.0209, Mean Absolute Error(MAE) = 0.0511 

External Validation metrics using a Test set: 

Number of Test set datapoints: 12 

Q2(F1)Test = 0.8924, Q2(F2)Test = 0.8855, Scaled average Rm2(Test) = 0.8445, Scaled delta Rm2 

(Test) = 0.0784, CCC (Test) = 0.9384, Mean Absolute Error(MAE, Test) = 0.106. 

In this study, the Kennard-Stone algorithm was employed to divide the dataset into training 

(modeling) and test (validation) sets in order to assess the robustness and statistical reliability of the 

developed QSAR model. A total of five models were generated using the Multiple Linear 

Regression- Genetic Function Approximation (MLR-GFA) method. Among these, Model 1 

demonstrated the best performance and was therefore selected for detailed evaluation. The 

statistical metrics for internal validation of this model include: coefficient of determination (R²) = 

0.9806, adjusted R² = 0.9767, standard error of estimation (SEE) = 0.0548, leave-one-out 

(Q²_LOO) = 0.9714, standard deviation of prediction error (SDEP_LOO) = 0.0598, scaled average 

Rm² (LOO) = 0.9602, scaled delta Rm² (LOO) = 0.0209, and mean absolute error (MAE) = 0.0511. 

The high R² value of 0.9806 indicates that approximately 98% of the variability in the observed data 

is captured by the model, highlighting its strong predictive potential. The close agreement between 

R² and adjusted R² further confirms that the model accurately reflects the influence of the selected 

molecular descriptors on the pIC₅₀ values, affirming the models explanatory power. External 

validation was also carried out to confirm the models predictive reliability. The following metrics 

were obtained: Q² (F1) = 0.8924, Q² (F2) = 0.8855, scaled average Rm² (Test) = 0.8445, scaled 

delta Rm² (Test) = 0.0784, concordance correlation coefficient (CCC) = 0.9384, and mean absolute 

error for the test set (MAE Test) = 0.106. These results collectively demonstrate that the model is 

both statistically robust and capable of making accurate predictions. 

The positive coefficients of the descriptors SpMin6_Bhs and ATSC4m in the build QSAR model 

indicate that these variables contribute positively to the inhibitory activity of the pyrimidocarbazole 

compounds. This suggests that increasing the presence or influence of these descriptors within the 

molecular structure may enhance the potency of the compounds against their biological target, the 
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3ERT protein receptor. Conversely, the descriptors SpMin2_Bhs, JGI10, and JG13 were associated 

with negative coefficients, implying that they negatively impact the compounds inhibitory activity. 

Therefore, reducing the values of these descriptors in the molecular design could potentially 

improve the compounds efficacy toward the target receptor (3ERT). Table 1 presents the 2D 

molecular structures and associated descriptor values of the pyrimidocarbazole derivatives. Table 2 

provides detailed results, including experimental and predicted pIC₅₀ values, residuals, docking 

scores, and hydrogen bonding interactions for all the studied compounds. The close agreement 

between experimental and predicted pIC₅₀ values, reflected in the low residuals, confirms the strong 

predictive performance and reliability of the developed model. 

The robustness of the model was further validated through Y-scrambling tests, as shown in Table 3 

The low R² and Q² values obtained from this test indicate that the model was not developed by 

chance. Table 4 contains the definitions of all descriptors included in the final QSAR model, while 

Table 5 presents statistical analyses, including correlation between descriptors and their individual 

impacts on the model. The Variance Inflation Factor (VIF) was used to evaluate multicollinearity 

among descriptors and for a model to be considered valid, VIF values should fall between 1 and 10. 

A VIF below 1 suggests no correlation between descriptors, while a value above 10 indicates 

problematic multicollinearity. In this study, all VIF values were found to be between 1 and 6, as 

reported in Table 5, confirming that multicollinearity was not an issue in the dataset. This 

reinforces the reliability and statistical soundness of the QSAR model developed. 

The Mean Effect (ME) values of all descriptors were calculated to evaluate their individual 

influence and relative contribution within the selected QSAR model. These values are shown in 

Table 5. The sign of each descriptor coefficient indicates whether it is positively or negatively 

impacts the compounds potency. Among all the descriptors, SpMin6_Bhs emerged as the most 

influential, as it had the highest (ME) value, signifying a strong positive effect on the pIC₅₀ values. 

The descriptors were ranked according to their contributions to the biological activity pIC50 of the 

compounds, in the following descending order: SpMin6_Bhs > ATSC4m > JGI10 > SpMin2_Bhs > 

JGI3. Figure 1 illustrates a scatter plot of predicted pIC₅₀ versus actual pIC₅₀ values for both 

training and test sets. The close alignment of data points along the diagonal line confirms the strong 

predictive accuracy of the model. Figure 2 presents a residual plot, where residuals for both data 

sets are distributed evenly above and below the zero line, indicating the absence of systematic errors 

in the model. 
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Table 1: 2D structure and descriptors of pyrimidocarbazole derivatives 

S/N Compounds SpMin2_Bhs JGI10 SpMin6_Bhs ATSC4m JGI3 
       
1. 

 

1.786 0.003 1.041 228.1 0.047 

2. 

 

1.784 0.003 1.081 -103.8 0.045 

3. 

 

1.792 0.003 1.036 -200.2 0.047 

4. 

 

1.836 0.004 1.149 251.2 0.047 

5. 

 

1.833 0.004 1.149 -76.375 0.044 

6. 

 

1.827 0.004 1.142 -140.2 0.046 

7. 

 

1.810 0.004 1.305 -200.2 0.047 
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8. 

 

1.808 0.004 1.074 -553.0 0.044 

9. 

 

1.802 0.004 1.030 -653.8 0.046 

10. 

 

1.805 0.004 1.270 -11.744 0.050 

11. 

 

1.787 0.005 1.380 242.5 0.050 

12. 

 

1.809 0.005 1.274 -358.3 0.048 

13. 

 

1.765 0.006 1.377 -1.04.1 0.048 

14. 

 

1.821 0.004 1.273 -528.8 0.049 

15. 

 

1.803 0.005 1.378 -332.6 0.050 
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16. 

 

1.850 0.005 1.280 73.437 0.049 

17. 

 

1.831 0.005 1.381 326.6 0.050 

18. 

 

1.847 0.006 1.284 -272.1 0.047 

19. 

 

1.829 0.006 1.380 -6.324 0.048 

20. 

 

1.843 0.005 1.283 -401.8 0.049 

21. 

 

1.824 0.005 1.377 -208.7 0.049 

22. 

 

1.826 0.005 1.264 -528.8 0.049 

23. 

 

1.807 0.005 1.374 -332.6 0.050 



A.I. Kubo et al. / Arab. J. Chem. Environ. Res. 13(1) (2026) 18-40                                                  26 

 

AJCER 

24. 

 

1.824 0.006 1.269 -888.2 0.047 

25. 

 

1.891 0.005 1.267 -1065 0.049 

26. 

 

1.800 0.005 1.370 -927.2 0.042 

27. 

 

1.831 0.006 1.104 1446 0.055 

28. 

 

1.828 0.005 1.064 1769 0.058 

29. 

 

1.840 0.005 1.062 1588 0.057 

30. 

 

1.840 0.006 1.154 1723 0.057 
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31. 

 

1.838 0.006 1.153 1409 0.054 

32. 

 

1.838 0.005 1.147 1556 0.056 

33. 

 

1.804 0.006 1.099 1295 0.054 

34. 

 

1.820 0.006 1.057 1588 0.057 

35. 

 

1.833 0.005 1.055 1410 0.056 

36. 

 

1.828 0.005 1.064 1769 0.058 

37. 

 

1.845 0.005 1.070 1399 0.057 

38. 

 

1.838 0.006 1.153 1409 0.054 
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39. 

 

1.845 0.005 1.070 1399 0.057 

40. 

 

1.840 0.006 1.154 1723 0.057 

41. 

 

1.838 0.006 1.153 1409 0.054 

42. 

 

1.838 0.005 1.147 1556 0.056 

43. 

 

1.820 0.006 1.057 1588 0.057 

 

 
Table 2: Experimental pIC50, Predicted pIC50, Residual, Docking score and H- Bond of 
pyrimidocarbazole derivatives 
S/NO Experimental pIC50 Predicted pIC50 Residue Docking score H-Bond 
*1. 6 5.607 -0.393 -21.459 

 
-1.571 
 

2. 5.698 
 

5.683 
 

-0.015 -24.846 
 

-2.954 
 

3. 5.522 
 

5.461 
 

-0.061 -22.000 
 

-1.623 
 

4. 5.397 5.342 
 

-0.055 -28.610 
 

-2.979 
 

*5. 5.221 
 

5.249 
 

0.028 -26.323 
 

-2.963 
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6. 5.301 
 

5.441 
 

0.14 -29.475 
 

-3.016 
 

7. 5.154 
 

5.199 
 

0.045 -23.644 
 

-1.656 
 

*8. 5.096 
 

5.304 
 

0.208 -26.098 
 

-1.172 
 

9. 5.045 
 

5.086 
 

0.041 -26.623 
 

-1.172 
 

*10. 5 
 

5.007 
 

0.007 -25.400 
 

-3.040 
 

11. 4.958 
 

4.981 
 

0.023 -22.965 
 

-1.255 
 

12. 4.920 
 

4.875 
 

-0.045 -21.419 
 

-3.240 
 

13. 4.886 
 

4.904 
 

0.018 -25.657 
 

-3.025 
 

*14. 4.853 
 

4.909 
 

0.056 -18.268 
 

-1.579 
 

15. 4.823 
 

4.788 
 

-0.044 -23.693 
 

-1.726 
 

16. 4.795 
 

4.805 
 

0.01 -30.308 
 

-2.902 
 

17. 4.769 
 

4.828 
 

0.059 -26.481 
 

-1.264 
 

*18. 4.744 
 

4.741 
 

-0.003 -26.210 
 

-2.214 
 

19. 4.721 
 

4.749 
 

0.028 -24.803 
 

-1.243 
 

*20. 4.698 
 

4.780 
 

0.082 -19.724 
 

-0.367 
 

21. 4.677 
 

4.708 
 

0.031 -29.684 
 

-2.377 
 

*22. 4.657 
 

4.647 
 

-0.01 -21.515 
 

-3.162 
 

23. 4.638 
 

4.656 
 

0.018 -26.527 
 

-3.167 
 

24. 4.619 
 

4.579 
 

-0.04 -20.232 
 

-0.584 
 

25. 4.585 
 

4.603 
 

0.018 -23.473 
 

-1.253 
 

26. 4.568 
 

4.517 
 

-0.051 -23.071 
 

-0.534 
 

27. 4.552 
 

4.468 
 

-0.084 -28.715 
 

-1.480 
 

*28. 4.537 
 

4.504 
 

-0.033 -18.068 
 

-0.925 
 

29. 4.522 
 

4.547 
 

0.025 -19.810 
 

-1.673 
 

30. 4.508 
 

4.363 
 

-0.145 -29.721 
 

-5.168 
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31. 4.494 
 

4.430 
 

-0.064 -27.012 
 

-3.078 
 

32. 4.481 
 

4.484 
 

0.003 -24.746 
 

-3.052 
 

33. 4.468 
 

4.321 
 

-0.147 -23.746 
 

-1.583 
 

*34. 4.455 
 

4.439 
 

-0.016 -20.513 
 

0 
 

35. 4.443 
 

4.410 
 

-0.033 -20.735 
 

-1.338 
 

36. 4.431 
 

4.468 
 

0.037 -19.011 
 

0 
 

37. 4.408 
 

4.477 
 

0.069 -24.687 
 

-3.053 
 

38. 4.387 
 

4.430 
 

0.043 -19.777 
 

-1.671 
 

39. 4.397 
 

4.363 
 

-0.034 -21.601 
 

-1.340 
 

*40. 4.376 
 

4.484 
 

0.108 -27.073 
 

-3.078 
 

41 4.366 
 

4.321 
 

-0.045 -21.179 
 

-1.669 
 

*42 4.356 
 

4.439 
 

0.083 -22.292 
 

-1.332 
 

43. 4.346 
 

4.410 
 

0.064 -26.709 
 

-3.061 
 

*Denote test set 
 
Table 3: Y- Scramble  
MODEL TYPE R2 Q2-LOO 
Original 0.9806 0.9714 
Random 1 0.0394 -0.4269 
Random 2 0.1635 -0.3774 
Random 3 0.0592 -0.4816 
Random 4 0.0916 -0.3437 
Random 5 0.2025 -0.1995 
Random 6 0.1731 -0.5007 
Random 7 0.1743 -0.2524 
Random 8 0.1107 -0.4497 
Random 9 0.2133 -0.2697 
Random 10 0.1570 -0.2846 
Summary:  
R2 Original Model 0.9806 
Q2-LOO Original Model 0.9714 
Average R2 10 Random Models 0.1384 
Average Q2-LOO 10 Random Models -0.3586 
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Table 4: Definition of descriptors and their class for model 1 

Descriptors  Definition  Class  
SpMin2_Bhs Smallest absolute eigenvalue of Burden modified matrix - n 2 / weighted 

by relative I-state 
2D 

JGI10 Mean topological charge index of order 10 2D 
SpMin6_Bhs Smallest absolute eigenvalue of Burden modified matrix - n 6 / weighted 

by relative I-state 
2D 

ATSC4m CenteredBroto-Moreau autocorrelation - lag 4 / weighted by mass 2D 
JGI3 Mean topological charge index of order 3 2D 
 
Table 5: Statistical analysis of model 1 parameters 

  SpMin2_Bhs JGI10 SpMin6_Bhs ATSC4m JGI3 VIF M/E 
SpMin2_Bhs 1 0.272475 -0.22825 0.489965 0.498242 1.3471 0.2458 
JGI10 0.272475 1 0.258818 0.416633 0.534294 2.2261 0.2512 
SpMin6_Bhs -0.22825 0.258818 1 -0.54233 -0.3848 2.3777 0.2574 
ATSC4m 0.489965 0.416633 -0.54233 1 0.9026 7.3573 0.2544 

JGI3 0.498242 0.534294 -0.3848 0.9026 1 
6.5690 -6.1977 

 

 
Figure 1: Plot of the predicted pIC50 versus actual pIC50 for the test and training sets compounds 
 
3.2 Docking results 

Molecular docking analysis is used to understand how two or more molecules interact such as a 

drug binding to a protein receptor. Docking tools are widely used in drug discovery, especially for 

virtual screening, which helps identify promising compounds for further study from a large 

molecular database. This requires computational tools that are both efficient and reliable (Yang et 

al., 2011). To visualize the molecular interactions, including hydrogen bonds, salt- bridged, alkyl 
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related and Pi-related interactions, Discovery Studio software was used. The ligand- receptor 

interactions between the pyrimidocarbazole derivatives and the target receptor were analyzed and 

are displayed in Table 6. The docking results in this study showed binding affinities ranging from (-

28.715 and -30.308 kcal/mol), indicating strong interactions between the compounds and the 

receptor. Specifically, Compound 16 exhibited the highest binding affinity (-30.308 kcal/mol), 

followed by Compound 30 (-29.721 kcal/mol), Compound 21 (-29.648 kcal/mol), Compound 6 (-

29.475 kcal/mol) and Compound 27 (-28.715 kcal/mol) respectively.. 

 
Figure 2: Scatter plot of the residuals against actual pIC50 

Compound 16 has the highest docking score (-30.308 kcal/mol) formed one conventional hydrogen 

bonds with LYS530 at a distance of (3.93 Å), Pi- sulfur with MET343 at a distance of (7.56 Å), 

MET522 at a distance of (5.65 Å). Additionally, it interacted with TRY526 at a distance of (4.76 Å) 

and CYS530 at a distance of (4.76 Å). It formed unfavourable donor- donor with CYS530 at a 

distance of (3.71 Å), it also interacted with Pi- Pi T- shaped with TYR528 at a distance of (4.76 Å), 

Alkyl with VAL533 at a distance of (5.57 Å), LEU346 at a distance of (4.75 Å), and Pi- alkyl with 

MET522 at a distance of (4.57 Å), LEU525 at a distance of (4.27 Å), ALA350 at a distance of (4.75 

Å) and (6.59 Å) respectively. The following amino acid residue LYS, MET, TRY, CYS, VAL, LEU 

and ALA might be the reason why compound 16 has higher binding affinity. Both 3D and 2D visual 

representations of compound 16 bound to the receptor are shown in Figure 3. 

Compound 30 with docking score (-29.721 kcal/mol) formed two conventional hydrogen bond with 

CYS530 at a distance of (3.48 Å), MET522 at a distance of (3.18 Å) and (6.25 Å). It also formed 
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carbon hydrogen bond with TYR526 at a distance of (4.43 Å), LYS529 at a distance of (4.99 Å). Pi- 

sulfur was observed to interact with CYS381 at a distance of (6.85 Å), Pi- Pi T-shaped interacted 

with TYR526 at a distance of (4.77 Å). It formed alkyl with VAL533 at a distance of (4.59 Å), 

LYS529 at a distance of (4.91 Å) and Pi- alkyl with LEU525 at a distance of (5.03 Å) and (4.91 Å), 

MET522 at a distance of (4.81 Å) and (6.25 Å) respectively.  Both 3D and 2D visual 

representations of compound 30 bound to the receptor are shown in Figure 4. 

Compound 21 with docking score (-21.684 kcal/mol) formed two conventional hydrogen bond with 

MET343 at a distance of (4.27 Å) and VAL534 at a distance of (5.03 Å). It formed sulfux-x with 

MET343 at a distance of (7.08 Å), (8.24 Å) and (5.03 Å) respectively. Amide Pi- stacked is 

interacted with LEU346 at a distance of (5.57 Å), alkyl with LEU391 at a distance of (5.99 Å) and 

ALA350 at a distance of (4.77 Å). Pi- alkyl is observed to interact with TRP383 at a distance of 

(5.21 Å), LEU536 at a distance of (5.85 Å) and (3.91 Å), VAL533 at a distance of (5.11 Å) and 

(6.68 Å), CYS530 at a distance of (5.64 Å), LEU 525 at a distance of (4.58 Å) and (4.91 Å). Both 

3D and 2D visual representation of compound 21 bound to the receptor are shown in Figure 5. 

Compound 6 with docking score (-29.475 kcal/mol) formed one conventional hydrogen bond with 

CYS530 at a distance of (3.81 Å), unfavourable donor- donor with CYS530 at a distance of (3.99 

Å). It formed Pi- sulfur with CYS530 at a distance of (4.65 Å), MET343 at a distance of (7.83 Å), 

Pi- alkyl with LYS529 at a distance of (7.31 Å), VAL533 at a distance of (4.70 Å) and (4.25 Å). It 

also formed PRO535 at a distance of (3.79 Å), LEU523 at a distance of (4.72 Å) and (4.86 Å), 

ALA350 at a distance of (6.50 Å) and (4.86 Å) and alkyl with LEU346 at a distance of (4.93 Å) and 

MET522 at a distance of (5.23 Å) respectively. Both 3D and 2D visual representation of compound 

6 bound to the receptor are shown in Figure 6. 

Compound 27 with docking score (-28.715 kcal/mol) formed conventional hydrogen bond with 

CYP530 at a distance of (3.75 Å), carbon hydrogen bond with LYS529 at a distance of (4.49 Å). It 

formed Pi- sulfur with TYR526 at a distance of (4.57 Å), MET343 at a distance of (6.87 Å) and 

CYP530 at a distance of (5.58 Å). Pi- amide interacted with LEU525 at a distance of (6.87 Å), 

LEU346 at a distance of (6.95 Å), alkyl with LEU346 at a distance of (4.06 Å), LYS529 at a 

distance of (6.44 Å), LEU539 at a distance of (4.96 Å) and MET528 at a distance of (5.71 Å). It 

also formed Pi- alkyl with ALA350 at a distance of (5.13 Å) and (5.39 Å), LEU525 at a distance of 

(4.81 Å), (5.24 Å) and (4.02 Å), VAL533 at a distance of (5.32 Å) and (5.62 Å) respectively. Both 

3D and 2D visual representation of compound 27 bound to the receptor are shown in Figure 7. 
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Figure 3: 3D and 2D representations of compound 16 in the active site of the 3ert receptor 

 
Figure 4: 3D and 2D representations of compound 30 in the active site of the 3ert receptor 

 
 

Figure 5: 3D and 2D representations of compound 21 in the active site of the 3ert receptor 
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Figure 6: 3D and 2D representations of compound 6 in the active site of the 3ert receptor 

 
 

Figure 7: 3D and 2D representations of compound 27 in the active site of the 3ert receptor 

3.3 Drug-likeness and Toxicity studies of the best compounds of pyrimidocarbazole 

Using free online tools, SwissADME and ProTox- 3.0, various parameters were evaluated to assess 

the compounds drug-likeness and toxicity characteristics. The radar plots in Figure 8 illustrate that 

all physico-chemical properties fall within the acceptable range defined by Lipinski’s rule of five, 

confirming their drug-likeness and potential for acceptable oral bioavailability. The toxicity and 

metabolism predictions, summarized in Table 8, indicate that the most promising compounds 

exhibit moderate ADMET profiles and do not show signs of extreme toxicity. Figure 9 and Figure 

10 indicate the molecular weight distribution for compound 16, identified as the lead candidate. In 
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these diagrams, the red line represents the mean molecular weight and the black line indicates the 

actual molecular weight, while the LD50 distribution is similarly depicted with the mean in red and 

the predicted median lethal dose in black. Overall, these results suggest that, with careful 

consideration of potential carcinogenicity, these compounds could serve as viable candidates for 

further clinical trials. 

Table 6: Amino Acid Residues involved in major interaction with 1z8l and Distance (Å) 
Compound Hydrogen bond Salt- bridge/ 

others 
Pi- related Alkyl related 

16 LYS530 (3.93 Å) LYS530 MET522, 
LEU525, 
ALA350, 
TYR526, 
CYS530,  
MET343 

VAL533, LEU346 

30 CYS530 (3.48 Å), 
MET522 (3.18 Å, 
6.25 Å), TYR526 
(4.43 Å), LYS529 
(4.99 Å)  

- CYS381, 
TYR526, 
LEU525,  
MET522 

VAL533, LYS529 

21 MET343 (4.27 Å), 
VAL543 (5.03 Å) 

MET343 CYS530, 
LEU346,  
TRP383,  
VAL533 

LEU391, ALA350 

6 CYS530 (3.81 Å) CYS530 CYS530, 
MET343, 
LYS529, 
VAL533, 
PRO535, 
LEU523,  
ALA350 

LEU346, MET522 

27 CYP530 (3.75 Å), 
LYS529 (4.49 Å) 

- TYR526, 
MET343, 
CYP530, 
LEU525, 
ALA350, 
VAL533 

LEU346, LYS529, 
MET528 

 

Table 7: Drug- likeness of the inhibiting compounds under investigation 

S/N
o 

MW 
(g/mol) 

HB
A 

HB
D 

MLOG
P 

P-gb 
Subtrate 

Fraction 
Csp3 

Bioavailability  
score 

Synthetic 
accessibility 

Lipinsk
i 

16 479.56 5 3 3.01 NO 0.15 0.55 5.06 YES 
30 447.92 5 2 3.77 NO 0.25 0.55 4.98 YES 
21 561.5 6 3 4.18 NO 0.21 0.17 5.38 NO 
6 433.89 5 2 3.57 NO 0.22 0.55 4.78 YES 
27 581.47 6 3 4.45 NO 0.19 0.17 5.26 NO 
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Table 8: Toxicity and Metabolism of the inhibiting compounds under investigation 

  Ligand 16 Ligand  30 Ligand 21 Ligand 6 Ligand 27 
Classification  Target Predictio

n 
Predictio
n 

Predictio
n 

Predictio
n 

Predictio
n 

Toxicity end 
point 

Carcinogenicity  Inactive Inactive Inactive Active Inactive 

Toxicity end 
point 

Mutagenicity Inactive Inactive Inactive Inactive Inactive 

Toxicity end 
point 

Cytotoxicity Inactive Inactive Inactive Inactive Inactive 

Toxicity end 
point 

BBB- barrier  Inactive Inactive Inactive Inactive Inactive 

Metabolism Cytochrome 
CYP1A2 

Inactive Inactive Inactive Inactive Inactive 

Metabolism Cytochrome 
CYP2C19 

Inactive Inactive Inactive Inactive Inactive 

Metabolism Cytochrome 
CYP2C9 

Active Active Active Active Active 

Metabolism Cytochrome 
CYP2D6 

Inactive Inactive Inactive Inactive Inactive 

Metabolism Cytochrome 
CYP3A4 

Active Active Active Active Active 

Metabolism Cytochrome 
CYP2E1 

Inactive Inactive Inactive Inactive Inactive 
 

 
Figure 8: Radar for compound 16, 30, 21, 6 and 27 

 
Figure 9: The molecular weight (MW) distribution of compound 16 
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Figure 10: The distributionof LD50 valuesofcompound 16 

Conclusion 

This study employed a dataset of 43 pyrimidocarbazole derivatives with reported anticancer activity 

against breast cancer. Density Functional Theory (DFT) calculations were performed using Spartan 

14 software, applying the B3LYP functional and the 6-31G* basis set to identify the most stable 

conformations by locating the global minima on the potential energy surface. The QSAR model 

developed showed a strong predictive ability, as evidenced by a high R² value of 0.9806, indicating 

that about 98% of the variation in the observed activity data is explained by the model. Among the 

molecular descriptors used, SpMin6_Bhs and ATSC4m had positive coefficients, suggesting that 

these features contribute favorably to the inhibitory activity of the pyrimidocarbazole compounds. 

Enhancing these descriptors in the molecular structure could potentially increase their effectiveness 

against the 3ERT protein receptor. On the other hand, descriptors such as SpMin2_Bhs, JGI10, and 

JG13 exhibited negative coefficients, indicating a detrimental effect on the compounds’ inhibitory 

activity. Thus, minimizing the presence or influence of these descriptors in molecular design could 

improve the compounds’ efficacy against the target receptor (3ERT). 
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