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Abstract: Cancer contributes to roughly 13% of global deaths each year, ranking among the top causes of
mortality worldwide. In high-income countries, it is responsible for over 20% of all deaths, underscoring its
significant impact. Among women, breast cancer is one of the most common long-term cancers and accounts
for approximately 24% of all female cancer cases, making it a leading cause of cancer-related deaths. This
study developed quantitative structure—activity relationship (QSAR) models using the Multiple Linear
Regression combined with Genetic Function Approximation (MLR-GFA) approach. Among the models
generated, Model 1 showed superior performance and was chosen for further analysis, displaying strong
statistical metrics: R? =0.9806, adjusted R? = 0.9767, SEE = 0.0548, MAE = 0.0511, Q’ (LOO)=0.9714 and
CCC = 0.9384. Molecular docking studies revealed high binding affinities between the compounds and the
target receptor, ranging from (-28.715 to -30.308 kcal/mol). Notably, Compound 16 demonstrated the
strongest binding affinity (-30.308 kcal/mol), followed by Compounds 30 (-29.721 kcal/mol), 21 (-29.648
kcal/mol), 6 (-29.475 kcal/mol), and 27 (-28.715 kcal/mol). Drug-likeness and toxicity assessments using
SwissADME and ProTox-3.0 confirmed the compounds favorable oral bioavailability profiles. These
findings suggest that, with careful evaluation of their potential carcinogenic risks, the identified compounds
hold promise as candidates for further clinical development.
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1. Introduction

Cancer is responsible for approximately 13% of global deaths annually, making it one of the leading
causes of mortality worldwide (Mahdy et al., 2019). In high income countries, it accounts for over
20% of all deaths, highlighting its significant relative impact. Targeted therapies for cancers such as
breast cancer have been approved, offering more precise treatment options. These therapies work by
interfering with specific molecules involved in tumor growth and progression, thereby limiting the
adverse effects of traditional non selective chemotherapy and overcoming resistance often seen with
existing anticancer drugs (Garber 2008). Cancer treatment encompasses several strategies, including
the inhibition of angiogenesis an essential process for tumor development making it a promising
therapeutic target (Kerbel, 2008, Titi et al., 2020). Breast cancer is one of the most prevalent long-
term cancers among women and remains a leading cause of cancer related deaths (Raja et al.,
2009), accounting for about 24% of all female cancer cases (Xiao et al., 2018). Common risk
factors among breast cancer patients include older age, minimal or no breastfeeding, weight gain,
late age at first childbirth, and sedentary lifestyle (Liu et al., 2018). Advancements in understanding
cancers molecular mechanisms and pathways have significantly contributed to the discovery of new
anticancer agents (Bhaumik ez al., 2019; Bouslamti et al., 2023; Zafar et al., 2025). Personalized
and targeted cancer therapies have emerged; however, these methods are often costly and not
always effective, indicating an urgent need for alternative treatment approaches (Nagireddy et al.,
2019; Bouammali ef al., 2024). To ensure the effectiveness of new drugs, their binding affinity to a
specific therapeutic target must be thoroughly evaluated. DFT, QSAR and Docking analysis is a
powerful tool in this regard, as it helps determine the drug’ ability to reach its target, produce the
desired effect, and be metabolized within a suitable timeframe. This analysis also helps minimize
the risk of failure in later stages of drug development (Kavallaris 2010; Faris et al., 2023; Salih et
al., 2023; Alruwaili et al., 2025; Kadda et al., 2025; Pasha and Manojmouli et al., 2025).

This study aims to explore the novel derivatives of pyrimidocarbazole with vigorous anticancer
activity. It involves building a Quantitative Structure - Activity Relationship (QSAR) model to
predict the anti-proliferative effects of these compounds, and performing molecular docking studies
with the (3ERT) protein receptor to analyze drug target interactions. The ultimate goal is to discover

effective and less toxic treatment options for breast cancer.

2. Materials and methods
2.1. Selection of compounds
In this study, a dataset comprising 43 pyrimidocarbazole derivatives and their reported anticancer

activities against breast cancer was obtained from the research conducted by Mohareb R.M and
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colleagues (Mohreb ef al., 2017). The anticancer activity data, originally expressed in ICso (LM),
were converted to plCso values using equation one. These compounds, along with their
corresponding activities, are presented in Table 1;

pICsy = —logyo (ICs5o X 107°) (1)

2.2. Computational resources

Several software tools were employed throughout this computational analysis. ChemDraw v12.1,
Spartan 14 v1.1.0 and ICMpro Docking Software were used for molecular design, quantum
calculations, and docking studies, respectively. The receptor-ligand interactions were further
analyzed and visualized in both 2D and 3D using Discovery Studio software. The entire research
was performed on an HP EliteBook laptop featuring a dual-core Intel processor at 2.5 GHz with 4
GB of RAM, running on Windows 8. Additionally, online platforms such as SwissADME and
ProTox-3 were used to predict drug-likeness and evaluate the ADMET profiles of the studied
compounds (Isa et al., 2024; Abdulrahman & Ibrahim, 2024).

2.3. Density functional theory

For quantum chemical calculations, Density Functional Theory (DFT) was utilized using Spartan
version 14. The molecular geometries of all 43 compounds were optimized using the (B3LYP)
Becke’s three-parameter hybrid functional with the Lee-Yang-Parr correlation functional together
with the 6-31G* basis set. This approach was used to determine the most stable conformations by

identifying global minima on the potential energy surface (Yunusa et al., 2021).

2.4. Molecular docking
The docking simulations were conducted using ICMpro Docking Software, with the protein
receptor (PDB ID: 3ERT) selected for assessing the binding poses of the small molecules under

investigation.

2.5. Drug-likeness and ADMET
Accessible online tools such as SwissADMEand ProTox- 3.0 were also used to evaluate the drug-

likeness and toxicity characteristics of the compounds.

3. Results and discussion

3.1. QSAR Results

FINAL GA-MLR MODEL RESULTS:
MLR equation:
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pIC50 = 14.33, (*SpMin2 Bhs) =-2.0132,(*JGI10) = -229.5961,(*SpMin6_Bhs) = +0.3874,
(*ATSC4m) = +0.0003, (*JGI3) =-102.4387

Internal Validation metrics using training set:

Number of Training set datapoints: 31

R? = 0.9806, R*(Adjusted) = 0.9767, Standard Error of Estimation (SEE) = 0.0548, Q*(LOO) =
0.9714, SDEP(LOO) = 0.0598, Scaled average Rm*(LOO) = 0.9602, Scaled delta Rm? (LOO) =
0.0209, Mean Absolute Error(MAE) = 0.0511

External Validation metrics using a Test set:

Number of Test set datapoints: 12

Q*(F1)Test = 0.8924, Q*(F2)Test = 0.8855, Scaled average Rm?(Test) = 0.8445, Scaled delta Rm?
(Test) =0.0784, CCC (Test) = 0.9384, Mean Absolute Error(MAE, Test) = 0.106.

In this study, the Kennard-Stone algorithm was employed to divide the dataset into training
(modeling) and test (validation) sets in order to assess the robustness and statistical reliability of the
developed QSAR model. A total of five models were generated using the Multiple Linear
Regression- Genetic Function Approximation (MLR-GFA) method. Among these, Model 1
demonstrated the best performance and was therefore selected for detailed evaluation. The
statistical metrics for internal validation of this model include: coefficient of determination (R?) =
0.9806, adjusted R?> = 0.9767, standard error of estimation (SEE) = 0.0548, leave-one-out
(Q?_LOO) = 0.9714, standard deviation of prediction error (SDEP_LOO) = 0.0598, scaled average
Rm? (LOO) = 0.9602, scaled delta Rm? (LOO) = 0.0209, and mean absolute error (MAE) = 0.0511.
The high R? value of 0.9806 indicates that approximately 98% of the variability in the observed data
is captured by the model, highlighting its strong predictive potential. The close agreement between
R? and adjusted R? further confirms that the model accurately reflects the influence of the selected
molecular descriptors on the plCso values, affirming the models explanatory power. External
validation was also carried out to confirm the models predictive reliability. The following metrics
were obtained: Q? (F1) = 0.8924, Q* (F2) = 0.8855, scaled average Rm? (Test) = 0.8445, scaled
delta Rm? (Test) = 0.0784, concordance correlation coefficient (CCC) = 0.9384, and mean absolute
error for the test set (MAE Test) = 0.106. These results collectively demonstrate that the model is

both statistically robust and capable of making accurate predictions.

The positive coefficients of the descriptors SpMin6 Bhs and ATSC4m in the build QSAR model
indicate that these variables contribute positively to the inhibitory activity of the pyrimidocarbazole
compounds. This suggests that increasing the presence or influence of these descriptors within the

molecular structure may enhance the potency of the compounds against their biological target, the
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3ERT protein receptor. Conversely, the descriptors SpMin2_ Bhs, JGI10, and JG13 were associated
with negative coefficients, implying that they negatively impact the compounds inhibitory activity.
Therefore, reducing the values of these descriptors in the molecular design could potentially
improve the compounds efficacy toward the target receptor (3ERT). Table 1 presents the 2D
molecular structures and associated descriptor values of the pyrimidocarbazole derivatives. Table 2
provides detailed results, including experimental and predicted pICso values, residuals, docking
scores, and hydrogen bonding interactions for all the studied compounds. The close agreement
between experimental and predicted pICso values, reflected in the low residuals, confirms the strong

predictive performance and reliability of the developed model.

The robustness of the model was further validated through Y-scrambling tests, as shown in Table 3
The low R? and Q? values obtained from this test indicate that the model was not developed by
chance. Table 4 contains the definitions of all descriptors included in the final QSAR model, while
Table 5 presents statistical analyses, including correlation between descriptors and their individual
impacts on the model. The Variance Inflation Factor (VIF) was used to evaluate multicollinearity
among descriptors and for a model to be considered valid, VIF values should fall between 1 and 10.
A VIF below 1 suggests no correlation between descriptors, while a value above 10 indicates
problematic multicollinearity. In this study, all VIF values were found to be between 1 and 6, as
reported in Table 5, confirming that multicollinearity was not an issue in the dataset. This

reinforces the reliability and statistical soundness of the QSAR model developed.

The Mean Effect (ME) values of all descriptors were calculated to evaluate their individual
influence and relative contribution within the selected QSAR model. These values are shown in
Table 5. The sign of each descriptor coefficient indicates whether it is positively or negatively
impacts the compounds potency. Among all the descriptors, SpMin6 Bhs emerged as the most
influential, as it had the highest (ME) value, signifying a strong positive effect on the pICso values.
The descriptors were ranked according to their contributions to the biological activity pICso of the
compounds, in the following descending order: SpMin6 Bhs > ATSC4m > JGI10 > SpMin2 Bhs >
JGI3. Figure 1 illustrates a scatter plot of predicted pICso versus actual pICso values for both
training and test sets. The close alignment of data points along the diagonal line confirms the strong
predictive accuracy of the model. Figure 2 presents a residual plot, where residuals for both data
sets are distributed evenly above and below the zero line, indicating the absence of systematic errors

in the model.
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Table 1: 2D structure and descriptors of pyrimidocarbazole derivatives

S/N | Compounds SpMin2 Bhs | JGII0 | SpMin6 Bhs | ATSC4m | JGI3
1. 1.786 0.003 1.041 228.1 0.047
2. 1.784 0.003 1.081 -103.8 0.045
3. 1.792 0.003 1.036 -200.2 0.047
4. 1.836 0.004 1.149 251.2 0.047
5. 1.833 0.004 1.149 -76.375 0.044
6. 1.827 0.004 1.142 -140.2 0.046
7. 1.810 0.004 1.305 -200.2 0.047
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8. 1.808 0.004 1.074 -553.0 0.044
9. 1.802 0.004 1.030 -653.8 0.046
10. 1.805 0.004 1.270 -11.744 0.050
11. 1.787 0.005 1.380 242.5 0.050
12. 1.809 0.005 1.274 -358.3 0.048
13. 1.765 0.006 1.377 -1.04.1 0.048
14. 1.821 0.004 1.273 -528.8 0.049
15. 1.803 0.005 1.378 -332.6 0.050
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16. 1.850 0.005 1.280 73.437 0.049
17. 1.831 0.005 1.381 326.6 0.050
18. 1.847 0.006 1.284 -272.1 0.047
19. 1.829 0.006 1.380 -6.324 0.048
20. 1.843 0.005 1.283 -401.8 0.049
21. 1.824 0.005 1.377 -208.7 0.049
22. B 1.826 0.005 1.264 -528.8 0.049
Oy
23. B 1.807 0.005 1.374 -332.6 0.050
O
<
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24. 1.824 0.006 1.269 -888.2 0.047
25. 1.891 0.005 1.267 -1065 0.049
26. 1.800 0.005 1.370 -927.2 0.042
27. 1.831 0.006 1.104 1446 0.055
28. 1.828 0.005 1.064 1769 0.058
29. 1.840 0.005 1.062 1588 0.057
30. 1.840 0.006 1.154 1723 0.057
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31. 1.838 0.006 1.153 1409 0.054
32. 1.838 0.005 1.147 1556 0.056
33. 1.804 0.006 1.099 1295 0.054
34. 1.820 0.006 1.057 1588 0.057
35. 1.833 0.005 1.055 1410 0.056
36. 1.828 0.005 1.064 1769 0.058
37. 1.845 0.005 1.070 1399 0.057
38. 1.838 0.006 1.153 1409 0.054
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39. 1.845 0.005 1.070 1399 0.057
40. 1.840 0.006 1.154 1723 0.057
41. 1.838 0.006 1.153 1409 0.054
42. 1.838 0.005 1.147 1556 0.056
43. 1.820 0.006 1.057 1588 0.057

28

Table 2: Experimental plCso, Predicted pICso, Residual, Docking score and H- Bond of
pyrimidocarbazole derivatives

S/NO | Experimental pICso | Predicted pICso Residue Docking score | H-Bond

*1. 6 5.607 -0.393 -21.459 -1.571
2. 5.698 5.683 -0.015 -24.846 -2.954
3. 5.522 5.461 -0.061 -22.000 -1.623
4. 5.397 5.342 -0.055 -28.610 -2.979

*5. 5.221 5.249 0.028 -26.323 -2.963
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6. 5.301 5.441 0.14 -29.475 -3.016
7. 5.154 5.199 0.045 -23.644 -1.656
*8. 5.096 5.304 0.208 -26.098 -1.172
9. 5.045 5.086 0.041 -26.623 -1.172
*10. |5 5.007 0.007 -25.400 -3.040
11. 4.958 4.981 0.023 -22.965 -1.255
12. 4.920 4.875 -0.045 -21.419 -3.240
13. 4.886 4.904 0.018 -25.657 -3.025
*14. | 4.853 4.909 0.056 -18.268 -1.579
15. 4.823 4.788 -0.044 -23.693 -1.726
16. 4.795 4.805 0.01 -30.308 -2.902
17. 4.769 4.828 0.059 -26.481 -1.264
*18. | 4.744 4.741 -0.003 -26.210 -2.214
19. 4.721 4.749 0.028 -24.803 -1.243
*20. | 4.698 4.780 0.082 -19.724 -0.367
21. 4.677 4.708 0.031 -29.684 -2.377
*22. | 4.657 4.647 -0.01 -21.515 -3.162
23. 4.638 4.656 0.018 -26.527 -3.167
24. 4.619 4.579 -0.04 -20.232 -0.584
25. 4.585 4.603 0.018 -23.473 -1.253
26. 4.568 4.517 -0.051 -23.071 -0.534
27. 4.552 4.468 -0.084 -28.715 -1.480
*28. | 4.537 4.504 -0.033 -18.068 -0.925
29. 4.522 4.547 0.025 -19.810 -1.673
30. 4.508 4.363 -0.145 -29.721 -5.168
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31. 4.494 4.430 -0.064 -27.012 -3.078
32. 4.481 4.484 0.003 -24.746 -3.052
33. 4.468 4.321 -0.147 -23.746 -1.583
*34. | 4.455 4.439 -0.016 -20.513 0

35. 4.443 4.410 -0.033 -20.735 -1.338
36. 4.431 4.468 0.037 -19.011 0

37. 4.408 4.477 0.069 -24.687 -3.053
38. 4.387 4.430 0.043 -19.777 -1.671
39. 4.397 4.363 -0.034 -21.601 -1.340
*40. | 4.376 4.484 0.108 -27.073 -3.078
41 4.366 4.321 -0.045 -21.179 -1.669
*42 4.356 4.439 0.083 -22.292 -1.332
43. 4.346 4.410 0.064 -26.709 -3.061

*Denote test set

Table 3: Y- Scramble

MODEL TYPE R? Q*L0OO
Original 0.9806 0.9714
Random 1 0.0394 -0.4269
Random 2 0.1635 -0.3774
Random 3 0.0592 -0.4816
Random 4 0.0916 -0.3437
Random 5 0.2025 -0.1995
Random 6 0.1731 -0.5007
Random 7 0.1743 -0.2524
Random 8 0.1107 -0.4497
Random 9 0.2133 -0.2697
Random 10 0.1570 -0.2846
Summary:

R? Original Model 0.9806
Q*L0OO Original Model 0.9714
Average R? 10 Random Models 0.1384
Average Q*>-LOO | 10 Random Models -0.3586
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Table 4: Definition of descriptors and their class for model 1

31

Descriptors Definition Class
SpMin2 Bhs | Smallest absolute eigenvalue of Burden modified matrix - n 2 / weighted | 2D
by relative I-state
JGII10 Mean topological charge index of order 10 2D
SpMin6_Bhs | Smallest absolute eigenvalue of Burden modified matrix - n 6 / weighted | 2D
by relative I-state
ATSC4m CenteredBroto-Moreau autocorrelation - lag 4 / weighted by mass 2D
JGI3 Mean topological charge index of order 3 2D
Table 5: Statistical analysis of model 1 parameters
SpMin2 Bhs | JGII0 | SpMin6 Bhs | ATSC4m JGI3 VIF M/E
SpMin2 Bhs 1| 0.272475 -0.22825 | 0.489965 | 0.498242 1.3471 | 0.2458
JGI10 0.272475 1 0.258818 | 0.416633 | 0.534294 2.2261 | 0.2512
SpMin6_Bhs -0.22825 | 0.258818 1| -0.54233 | -0.3848 | 23777 0.2574
ATSC4m 0.489965 | 0.416633 -0.54233 1 0.9026 7.3573 | 0.2544
6.5690 | -6.1977
JGI3 0.498242 | 0.534294 -0.3848 0.9026 1

Response Plot

o
o
x
(o ) )
3 o
=
£ o™
> b o
56
X
o %
i: oA X
o< x°
Y cbserved
O Training X Test

Figure 1: Plot of the predicted pICso versus actual pICso for the test and training sets compounds

3.2 Docking results

Molecular docking analysis is used to understand how two or more molecules interact such as a

drug binding to a protein receptor. Docking tools are widely used in drug discovery, especially for

virtual screening, which helps identify promising compounds for further study from a large

molecular database. This requires computational tools that are both efficient and reliable (Yang et

al., 2011). To visualize the molecular interactions, including hydrogen bonds, salt- bridged, alkyl
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related and Pi-related interactions, Discovery Studio software was used. The ligand- receptor
interactions between the pyrimidocarbazole derivatives and the target receptor were analyzed and
are displayed in Table 6. The docking results in this study showed binding affinities ranging from (-
28.715 and -30.308 kcal/mol), indicating strong interactions between the compounds and the
receptor. Specifically, Compound 16 exhibited the highest binding affinity (-30.308 kcal/mol),
followed by Compound 30 (-29.721 kcal/mol), Compound 21 (-29.648 kcal/mol), Compound 6 (-
29.475 kcal/mol) and Compound 27 (-28.715 kcal/mol) respectively..

Residuals Plot

Residuals
2.
v
P |
]
D

Y observed (response)

B Training M Test

Figure 2: Scatter plot of the residuals against actual pICso

Compound 16 has the highest docking score (-30.308 kcal/mol) formed one conventional hydrogen
bonds with LYS530 at a distance of (3.93 A), Pi- sulfur with MET343 at a distance of (7.56 A),
METS522 at a distance of (5.65 A). Additionally, it interacted with TRY 526 at a distance of (4.76 A)
and CYS530 at a distance of (4.76 A). It formed unfavourable donor- donor with CYS530 at a
distance of (3.71 A), it also interacted with Pi- Pi T- shaped with TYR528 at a distance of (4.76 A),
Alkyl with VAL533 at a distance of (5.57 A), LEU346 at a distance of (4.75 A), and Pi- alkyl with
METS522 at a distance of (4.57 A), LEU525 at a distance of (4.27 A), ALA350 at a distance of (4.75
A) and (6.59 A) respectively. The following amino acid residue LYS, MET, TRY, CYS, VAL, LEU
and ALA might be the reason why compound 16 has higher binding affinity. Both 3D and 2D visual

representations of compound 16 bound to the receptor are shown in Figure 3.

Compound 30 with docking score (-29.721 kcal/mol) formed two conventional hydrogen bond with
CYS530 at a distance of (3.48 A), MET522 at a distance of (3.18 A) and (6.25 A). It also formed
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carbon hydrogen bond with TYR526 at a distance of (4.43 A), LYS529 at a distance of (4.99 A). Pi-
sulfur was observed to interact with CYS381 at a distance of (6.85 A), Pi- Pi T-shaped interacted
with TYR526 at a distance of (4.77 A). It formed alkyl with VAL533 at a distance of (4.59 A),
LYS529 at a distance of (4.91 A) and Pi- alkyl with LEU525 at a distance of (5.03 A) and (4.91 A),
MET522 at a distance of (4.81 A) and (6.25 A) respectively. Both 3D and 2D visual

representations of compound 30 bound to the receptor are shown in Figure 4.

Compound 21 with docking score (-21.684 kcal/mol) formed two conventional hydrogen bond with
MET343 at a distance of (4.27 A) and VAL534 at a distance of (5.03 A). It formed sulfux-x with
MET343 at a distance of (7.08 A), (8.24 A) and (5.03 A) respectively. Amide Pi- stacked is
interacted with LEU346 at a distance of (5.57 A), alkyl with LEU391 at a distance of (5.99 A) and
ALA350 at a distance of (4.77 A). Pi- alkyl is observed to interact with TRP383 at a distance of
(5.21 A), LEU536 at a distance of (5.85 A) and (3.91 A), VAL533 at a distance of (5.11 A) and
(6.68 A), CYS530 at a distance of (5.64 A), LEU 525 at a distance of (4.58 A) and (4.91 A). Both

3D and 2D visual representation of compound 21 bound to the receptor are shown in Figure 5.

Compound 6 with docking score (-29.475 kcal/mol) formed one conventional hydrogen bond with
CYS530 at a distance of (3.81 A), unfavourable donor- donor with CYS530 at a distance of (3.99
A). It formed Pi- sulfur with CYS530 at a distance of (4.65 A), MET343 at a distance of (7.83 A),
Pi- alkyl with LYS529 at a distance of (7.31 A), VAL533 at a distance of (4.70 A) and (4.25 A). It
also formed PRO535 at a distance of (3.79 A), LEU523 at a distance of (4.72 A) and (4.86 A),
ALA350 at a distance of (6.50 A) and (4.86 A) and alkyl with LEU346 at a distance of (4.93 A) and
METS522 at a distance of (5.23 A) respectively. Both 3D and 2D visual representation of compound

6 bound to the receptor are shown in Figure 6.

Compound 27 with docking score (-28.715 kcal/mol) formed conventional hydrogen bond with
CYP530 at a distance of (3.75 A), carbon hydrogen bond with LYS529 at a distance of (4.49 A). It
formed Pi- sulfur with TYR526 at a distance of (4.57 A), MET343 at a distance of (6.87 A) and
CYP530 at a distance of (5.58 A). Pi- amide interacted with LEU525 at a distance of (6.87 A),
LEU346 at a distance of (6.95 A), alkyl with LEU346 at a distance of (4.06 A), LYS529 at a
distance of (6.44 A), LEU539 at a distance of (4.96 A) and MET528 at a distance of (5.71 A). It
also formed Pi- alkyl with ALA350 at a distance of (5.13 A) and (5.39 A), LEU525 at a distance of
(4.81 A), (5.24 A) and (4.02 A), VAL533 at a distance of (5.32 A) and (5.62 A) respectively. Both

3D and 2D visual representation of compound 27 bound to the receptor are shown in Figure 7.
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Figure 3: 3D and 2D representations of compound 16 in the active site of the 3ert receptor
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Figure 4: 3D and 2D representations of compound 30 in the active site of the 3ert receptor
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Figure 5: 3D and 2D representations of compound 21 in the active site of the 3ert receptor
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Figure 6: 3D and 2D representations of compound 6 in the active site of the 3ert receptor

|A:VALS33
532 [A:LEUS39

A:MET343

Interactions

- Conventional Hydrogen Bond E Amide-Pi Stacked
I:! Carbon Hydrogen Bond :] Alkyl
|:| Pi-Sulfur ‘: Pi-Alkyl

Figure 7: 3D and 2D representations of compound 27 in the active site of the 3ert receptor

3.3 Drug-likeness and Toxicity studies of the best compounds of pyrimidocarbazole

Using free online tools, SwissADME and ProTox- 3.0, various parameters were evaluated to assess
the compounds drug-likeness and toxicity characteristics. The radar plots in Figure 8 illustrate that
all physico-chemical properties fall within the acceptable range defined by Lipinski’s rule of five,
confirming their drug-likeness and potential for acceptable oral bioavailability. The toxicity and
metabolism predictions, summarized in Table 8, indicate that the most promising compounds
exhibit moderate ADMET profiles and do not show signs of extreme toxicity. Figure 9 and Figure

10 indicate the molecular weight distribution for compound 16, identified as the lead candidate. In
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these diagrams, the red line represents the mean molecular weight and the black line indicates the
actual molecular weight, while the LD50 distribution is similarly depicted with the mean in red and
the predicted median lethal dose in black. Overall, these results suggest that, with careful
consideration of potential carcinogenicity, these compounds could serve as viable candidates for

further clinical trials.

Table 6: Amino Acid Residues involved in major interaction with 1z81 and Distance (A)

Compound

Hydrogen bond

Salt- bridge/
others

Pi- related

Alkyl related

16

LYS530 (3.93 A)

LYS530

MET522,
LEU525,
ALA350,
TYRS526,
CYS530,
MET343

VALS533, LEU346

30

CYS530 (3.48 A),
MET522 (3.18 A,
6.25 A), TYR526
(4.43 A), LYS529
(4.99 A)

CYS381,
TYRS26,
LEUS25,
METS522

VALS533, LYS529

21

MET343 (4.27 A),
VALS543 (5.03 A)

MET343

CYS530,
LEU346,
TRP383,
VALS533

LEU391, ALA350

CYS530 (3.81 A)

CYS530

CYS530,
MET343,
LYS529,

VALS533,
PRO535,
LEU523,
ALA350

LEU346, MET522

27

CYP530 (3.75 A),
LYS529 (4.49 A)

TYRS526,
MET343,
CYP530,
LEU525,
ALA350,
VALS533

LEU346, LYS529,
METS528

Table 7: Drug- likeness of the inhibiting compounds under investigation

S/N | MW HB |HB | MLOG | P-gb Fraction | Bioavailability | Synthetic Lipinsk
0 (g/mol) | A D P Subtrate | Csp3 score accessibility | i

16 479.56 |5 3 3.01 NO 0.15 0.55 5.06 YES
30 44792 |5 2 3.77 NO 0.25 0.55 4.98 YES
21 561.5 6 3 4.18 NO 0.21 0.17 5.38 NO

6 433.89 |5 2 3.57 NO 0.22 0.55 4.78 YES
27 58147 |6 3 4.45 NO 0.19 0.17 5.26 NO
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Table 8: Toxicity and Metabolism of the inhibiting compounds under investigation
Ligand 16 | Ligand 30 | Ligand 21 | Ligand 6 | Ligand 27
Classification Target Predictio | Predictio | Predictio | Predictio | Predictio
n n n n n
Toxicity end Carcinogenicity Inactive Inactive Inactive Active Inactive
point
Toxicity end Mutagenicity Inactive Inactive Inactive Inactive Inactive
point
Toxicity end Cytotoxicity Inactive Inactive Inactive Inactive Inactive
point
Toxicity end BBB- barrier Inactive Inactive Inactive Inactive Inactive
point
Metabolism Cytochrome Inactive Inactive Inactive Inactive Inactive
CYPIA2
Metabolism Cytochrome Inactive Inactive Inactive Inactive Inactive
CYP2C19
Metabolism Cytochrome Active Active Active Active Active
CYP2C9
Metabolism Cytochrome Inactive Inactive Inactive Inactive Inactive
CYP2D6
Metabolism Cytochrome Active Active Active Active Active
CYP3A4
Metabolism Cytochrome Inactive Inactive Inactive Inactive Inactive
CYP2E1
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Figure 9: The molecular weight (MW) distribution of compound 16
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Figure 10: The distributionof LD50 valuesofcompound 16

Conclusion

This study employed a dataset of 43 pyrimidocarbazole derivatives with reported anticancer activity
against breast cancer. Density Functional Theory (DFT) calculations were performed using Spartan
14 software, applying the B3LYP functional and the 6-31G* basis set to identify the most stable
conformations by locating the global minima on the potential energy surface. The QSAR model
developed showed a strong predictive ability, as evidenced by a high R? value of 0.9806, indicating
that about 98% of the variation in the observed activity data is explained by the model. Among the
molecular descriptors used, SpMin6 Bhs and ATSC4m had positive coefficients, suggesting that
these features contribute favorably to the inhibitory activity of the pyrimidocarbazole compounds.
Enhancing these descriptors in the molecular structure could potentially increase their effectiveness
against the 3ERT protein receptor. On the other hand, descriptors such as SpMin2 Bhs, JGI10, and
JG13 exhibited negative coefficients, indicating a detrimental effect on the compounds’ inhibitory
activity. Thus, minimizing the presence or influence of these descriptors in molecular design could

improve the compounds’ efficacy against the target receptor (3ERT).
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