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Abstract 
 
This paper analyses the yearly variability of data from three synoptic stations. These data are cross-referenced 

with the lightning data of the area. The resulting linear or polynomial regression models revealed the same 

description of the relationship between the mean number of lightning flashes and the mean surface wind speed. A 

correlation of 0.75, 0.89 and 0.90 is significantly established between the data from Kandi, Natitingou and Parakou 

stations respectively. A coefficient of determination of 0.56; 0.80 and 0.81 is significantly obtained respectively 

for these stations by linear regression and then 0.56; 0.84 and 0.85 by polynomial regression. The F-test showed 

that the fits of the two models are equal. However, the coefficient of determination is higher with the polynomial 

regression. All other things being equal, when the average surface wind speed increases by 1m/s, the average 

number of lightning bolts increases by 8400 according to Kandi, 12674 according to Natitingou and 8847 

according to Parakou. More than 80% of the variability in the average number of lightning flashes is explained 

by the average surface wind speed. 
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1.! Introduction 

Thunder and lightning are complex weather phenomena. For a thunderstorm to originate and develop, 

three essential factors must be present: humidity, instability and a dynamic trigger. Thunderstorms can 

occur as a result of daytime heating, the passage of cold, moist air over a warmer surface, or by 

orographic lift or by a convergence of surface winds. Depending on their origin, they are classified as 

frontal (or cyclonic), orographic and thermal (or heat-related) thunderstorms. Topography is therefore a 

very important factor. Thunderstorms can occur if an unstable flow of moist air is lifted by a mountain 

range. In this case, these thunderstorms line up along the windward side of the mountain range, and last 

as long as the airflow feeds them.  

Being a meteorological phenomenon, it is established that thunderstorms and lightning have intimate 

relationships with other meteorological phenomena such as climate change. Several studies in various 

localities and at different scales have analysed the link between thunderstorms or the lightning they 

produce. For example, lightning and the production of NOx, which is a greenhouse gas, [1–14], lightning 

and rainfall accompanying thunderstorms [15–22] or deep conversion and lightning activity [23–26], 

lightning and temperature [21, 27, 28], lightning and atmospheric pressure [29], lightning and relative 

humidity [30], lightning and insolation [31, 32], lightning and wind speed [33], lightning and climate 

change [21, 28, 34–51].  All of these models provide climatology and even forecasting. Despite their 

complexity, the forecasting of thunderstorms is still possible. Indices are defined and calculated and then 

used to predict the risk of thunderstorms locally.  These indices are defined according to the type of 

climate such as Adedokun 2, TTI Mod Index and Faust for temperate climates or the indices of [52] and 

[53] which are indices of instability based on linear regression with several predictors [54].  

The availability of certain data encourages the linking of data that is not always easily accessible. In this 

way, it will be possible to know the variability of some variables that have the variability of others. The 

genesis of a storm cell is a function of three essential factors as mentioned above. These factors are also 

linked to other parameters which are more easily measurable. Statistical modelling, which is a formalised 

representation of a phenomenon, is a means used to explain the links between the different variables. 

The construction of models is therefore a delicate process that requires a certain amount of skill in order 

to highlight reality. It is therefore a schematic or simplified representation of a complex reality. The 

choice of model is also decisive in order to reveal this reality. Thus an unwise choice can lead to an 

erroneous representation of reality. It is therefore sometimes necessary to use several models for the 

same phenomenon in order to identify the optimal model.    

In this paper, the north of Benin is taken as an example to analyse the relationship between the average 

surface wind speed and the average number of lightning flashes. Since it is very often easier to have data 
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related to wind than to lightning, the latter are chosen as endogenous variables here. Two types of models 

are examined to establish the links: linear regression and polynomial regression.  Linear regression 

sometimes reflects a coarse relationship between the variables, which is why it is refined by polynomial 

regression. A model selection is then made from the statistical tests.  

In this paper, the north of Benin is taken as an example to analyse the relationship between the average 

surface wind speed and the average number of lightning flashes. Since it is very often easier to have data 

related to wind than to lightning, the latter are chosen as endogenous variables here. Two types of models 

are examined to establish the links: linear regression and polynomial regression. Linear regression 

sometimes reflects a coarse relationship between the variables, which is why it is refined by polynomial 

regression. A model selection is then made from the statistical tests.  

This work is organised as follows: the next section presents the study area, the data used and the adapted 

methodology, then the third section presents the results. 

 
Figure 1. Map showing the study area. 

 

2. Materials and methods 

2.1. Presentation of the study area 

The study area consists of two topographic units: the crystalline peneplain and the sandstone plateau. 

The presence of mountain ranges should be noted. Their altitudes in relation to sea level vary between 

510 and 700 m. The peneplain is dotted to the south with a multitude of isolated hills. It is connected to 

the Atacora massif to the west and to the Kandi plateau to the north and north-east. These hills, although 

not very high, are the major feature of the topography. Despite their modest altitude, they influence the 

flows. These reliefs increase daytime heating, disturb the currents, aggravate turbulence and favour the 
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ascent of air masses. Their presence explains the increased importance of thunderstorm events in this 

region [55, 56]. 

The region is subject to a Sudanese type climate characterised by a single dry season and a single wet 

season. The rainy season in this area is from March to October [57]. Thunderstorms mainly occur from 

late spring to late summer, but they are particularly numerous and violent near the reliefs, even modest 

ones [56, 58]. 

Three synoptic stations cover the study area. These are the stations of Kandi, Natitingou and Parakou. 

These stations belong to the observation network of the National Meteorological Directorate and have 

produced more than 50 years of climatological data. Fig1 shows the distribution of the synoptic stations 

over the study area and Table 1 specifies their geographical coordinates. There are several reasons for 

choosing this area. The availability of data and the orography of the area are the most relevant. Indeed, 

this orography favours the uplift of winds at the surface. The boundaries of the study area are indicated 

in Fig1 by the green line. 

 

Table 1. Geographical coordinates of the synoptic stations. 

Station Latitude Longitude Altitude 

Kandi 11°8N 2°56 E 290m 

Natitingou 10°19N 1°23 E 460m 

Parakou 9°21N 2°36E 392m 

 

2.2. Data 

2.2.1. Flash data 

The flash data used in this study comes exclusively from the World Wide Lightning Location Network 

(WWLLN). This is a real-time global flash detection network with worldwide coverage.  WWLLN has 

more than 70 sensors around the world today [59–61]. Each station in the network consists of a 1.5 m 

antenna, a GPS (global positioning system) receiver, a receiver for very low frequency electromagnetic 

radiation (VLF) called lightning sferics and a computer with internet connection. To locate lightning, 

the technique known as TOGA (Time of Group Arrival) [62–69]. Residual minimization methods are 

used in the processing to create high quality data for each station. WWLLN data processing ensures that 

the residual time is less than 30ms and that the data provided by the network corresponds to lightning 

strikes detected by at least five stations, [64, 68]. The accuracy of lightning location on the network is 5 

km, [70, 71]. Thirteen parameters are measured: date, time in UTC (Universal Time Coordinate), latitude 

and longitude in fractions of a degree, residual error in microseconds (always < 30), the number of 
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stations involved in locating the lightning strike (always � 5), the energy radiated at very low frequency 

by the lightning in joules, the uncertainty on the energy radiated in joules, the sub-group of stations 

located between 1000 and 8000 km from the strike, used to estimate the energy. Each line in the database 

represents one recorded flash. The data of this study cover the period from January 2005 to December 

2017. 

 

2.2.2. Data on climatological variables 

Data on climatic variables were collected from the meteorological stations of Kandi, Natitingou and 

Parakou indicated in Figure 1. In these synoptic stations in Benin, devices were installed in a 

meteorological park for hourly and daily measurements of climatological and meteorological 

parameters. These devices include the anemometer and weather vane, which are placed about 10metres 

above the ground to capture wind speed and direction; the weather shelter at two metres to measure data 

on temperature and humidity of the ambient air; the Campbell heliograph to capture and measure the 

duration of insolation during the course of a day; and a rain gauge to collect and measure the height of 

rainfall. The data used covers the period from 1980 to 2019 and includes wind direction (wind), wind 

speed (speed), air temperature (temp), dew point temperature (dewt), atmospheric pressure (pres) and 

relative humidity (hr). For this study, only the first two variables are used. 

 

2.3. Methods 

2.3.1. Data processing 

WWLLN data is available for the entire study area. They are directly used to determine variables at 

different time scales (hourly, daily, monthly, annual and interannual). Indeed, each return arc in the 

database is tracked by at least five sensors.  

As for the data from the synoptic stations, the percentages of missing values are determined. Figure 2 

shows the percentage of missing values for each series. The data on direction show a high rate of missing 

data with more than 50% at the Natitingou station. Figure 3 illustrates the number of gaps shared by 

several variables. 15 lines of data for Kandi station are missing values, 17 and 14 for Natitingou and 

Parakou respectively. To fill the gaps, the average of the period of each series was used.  

A visualization between the variable to be explained, which is the average number of flashes, and the 

potential explanatory variables is made. Figure 4 shows this relationship, specifies the correlation 

coefficients and indicates the distribution of the different variables. The analysis of this Figure 4 

confirmed the choice of the mean wind speed at the surface as the explanatory variable. In order to 

analyse wind direction and speed, this second variable is taken into account in the analysis.  



M. W.  Onah et al. / Arab. J. Chem. Environ. Res. 08(2) (2021) 159-180                                                                  164                                                                       

 

AJCER 

 
Figure 2. Visualization of the percentage of missing values. 

 

 
Figure 3. Visualization of the relationships between missing values. 

 
Figure 4. Scatter plot of all pairs of variables. 

 

The Gaussian noise hypothesis makes it possible to obtain the law of estimators and thus to carry out 
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hypothesis tests on the parameters of the model. This hypothesis is important for this study since the 

annual averages of the study period of the WWLLN data cover only thirteen years. The unknown model 

parameters are β0, β1 and σ².  A graphical inspection of the relationship between the average number of 

flashes and the average wind speed, at different time scales, revealed a noticeable trend with annual 

averages. Thus, an estimation of the model parameters of the annual averages is made. By choosing yi 

as the mean number of flashes and xi as the mean surface wind speed the following model is studied: 

                         !"# = !%& +!%()# +!*#  ,                 i = 1,...n                                                    (2) 

where εi are independent random variables of zero expectation and constant variance σ², regardless of i. 

The estimators are obtained by minimising the least squares criterion:  

                                     +(-&, -() ("#
0
#1( −!-& −!!-()#)

3                                         (3) 
Several tests are carried out. After an overall evaluation of the model, the interpretation of the 

coefficients is made. Confidence and prediction intervals for new values are given. If x0 designates a 

new observation of the mean surface wind speed, the mean flash value is a realization of the random 

variable: 

                                            "& = !%& +!%()& +!*&                                                          (4) 

The predictor of y0 for the new value x0 is given by: 

                                                             !4&
5 = !%& +!%(6(                                                           (5) 

The level prediction interval 1-α for y0 which allows to find two random bounds which will frame the 

random variable y0 with a probability equal to 1- α : 
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An unknown fixed value estimator: 

                                              G 4&! 6 = !)& = !%& +!%()&                                                   (7) 

is given by : 

                                               G 4& 6 = )& ∶= !4 = !%& +!%()(                                                (8) 

with a confidence interval of level 1-α of E(Y0|X=x0) : 
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D
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!                                               (9) 

The analysis of the residuals made it possible to examine the basic assumption of the linear model. The 

test for assessing the significance of the linear link between the two variables is valid, if the residuals 

are independent; distributed according to a Normal distribution with a null mean and are homogeneously 

distributed, i.e. with a constant variance. 
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Graphic analysis, Jarque and Bera's and Shapiro's non-normality test are used to establish the normality 

of error terms. The hypothesis of normality of the error terms plays an essential role because it will 

specify the statistical distribution of the estimators. It is therefore thanks to this hypothesis that statistical 

inference can be made. The hypothesis of normality can be tested on the variables of the model or on 

the error terms of the model. The hypothesis test is as follows: Ho: X follows a normal law N(m, σ) 

against H1: X does not follow a normal law N(m, σ). The Jarque-Bera statistic is defined by: 

                                                JK = L
MB

N
+!

(O9P)B

3Q
                                                           (10) 

Where:+ = ! RS
TS

; =! RU
TU

 ;!V5 = !
(

0
)# −!) 8

0
#1( , respectively, S is the asymmetry coefficient (Skewess) 

and k the application coefficient (kurtosis). The JB statistic follows a Chi-Two law with two degrees of 

freedom under the assumption of normality.  

The Shapiro-Wilk test is based on the W-statistic. Compared to other tests, it is particularly powerful for 

small populations (n � 50). The test statistic is written as follows:  

                                                                  W =!
XC! @ YCZF !9!@(C)

D
B
CEF

B

(@C!9!@)
D
B
CEF ²

                                         (11) 

Where: x(i) corresponds to the sorted data series ; 0
3
 is the entire part of the 0

3
 report; \#  are constants 

generated from the mean and variance covariance matrix of the quantiles of a sample of size n according 

to the normal distribution. The W statistic can therefore be interpreted as the coefficient of determination 

(the square of the correlation coefficient) between the series of quantiles generated from the normal 

distribution and the empirical quantiles obtained from the data. The higher the W statistic, the more 

credible the compatibility with the normal distribution. 

The Breusch-Pagan test is used to check the homogeneity of the residues. It tests the hypothesis of 

homoscedasticity of the error term of a linear regression model. The Breusch-Pagan statistic:  

                                                    K8 = L]3                                                                  (12) 
Which follows χ²(K-1) with K the number of coefficients to be estimated, n the number of values used 

and R² the coefficient of determination. If the Breusch-Pagan statistic is higher than the one read in the 

Chi-Deux table for a certain level of risk of error of the first species (5% being the value generally 

retained), then the null hypothesis of homoscedasticity is rejected. 

The Durbin-Watson test is used to analyse the independence of the residues.  

                                                 ^W =!
_C9!_CYF

BD
CEB

_C
BD

CEF
                                                    (13) 

with e residue. This statistic, noted d or DW, has a value between 0 and 4. If it is close to zero, the 
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autocorrelation is positive, values around 2 show an absence of autocorrelation and if it is close to 4, 

there is negative autocorrelation (values both above and below the trend). 

To ensure that the linear regression is not coarse, a polynomial regression was performed. The 

polynomial model consists of representing the relationship between the explanatory variable Y and an 

explanatory variable X in a non-linear form of the type: 

                                       4 = !%& +!%(6 +!%3!63 + ⋯+!%56
5 + *                               (14) 

This model is a multiple regression model with p degrees being the successive powers of the explanatory 

variable. It should be noted that polynomial regression belongs to the family of linear models because 

linear refers to the parameters of the model and the fact that their effects are added together. Moreover, 

linear regression is a polynomial regression of degree 1. For this study p = 2, i.e. a polynomial regression 

of degree 2.  

To compare the fit of the two models, an F-test is used. This test is defined by: 

                                                             a = !

bccF!Y!bccB
DdefgfhBY!DdefgfhF

bccB
DY!DdefgfhB

                                                                 (15)                

where: Index 1 refers to the linear model and index 2 to the polynomial model, RSS the sum of the 

residual squares, nbparam number of parameter of the models which is equal to 2 for linear regression 

(intercept and slope) and 3 for polynomial regression (intercept and both slopes), n the number of data. 

 

3. Results and discussion 

3.1. Comparison of station data 

The daily, monthly and annual averages of the data for each station show good correlation. Figure 5 and 

6 summarize the observations made by the three synoptic stations for the variables wind direction and 

mean wind speed. Figure 5 shows the comparative evolution of the average speed of the three synoptic 

stations. The inter-annual variability of the three stations is consistent. An almost identical trend can 

therefore be seen for all three stations. This observation ensures that the correction of the data did not 

significantly affect them. Figure 6 shows the comparative variation in average wind direction for the 

three synoptic stations. Despite the extensive correction of the data, a highly correlated trend in the 

station data can be noted. It should be noted that the different stations do not have the same rate of 

deficiency. Despite the remarkable correlation of the data, the analysis took into account the data from 

each station. The identification of the link between the mean wind speed and the mean number of flashes 

is done on different time scales (daily, monthly and yearly). Only the annual scale produced convincing 

results.  Therefore, only the results of these data will be presented in the following. 
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Figure 5. Climatology of the average monthly wind speed of the three stations. 

 
Figure 6.  Climatology of the average monthly wind direction of the three stations.  

 

3.2. Analysis of raw data 

Figure 7 shows the relationship between the annual average wind speed and the average number of 

flashes. The same trend is noted for both variables, which bodes well for a possible correlation between 

these variables. It should be noted that the average speed is higher through the data from the Parakou 

station than for the other two stations. The inter-annual variation of the two series is the same.  

 
Figure 7. Comparison of average wind speed and average number of flashes at each station. 

 

Figure 8 shows the wind rose obtained from the data from each station. The directions are generally the 

same but with a difference in the proportions of the speeds. The prevailing winds are SN (South North), 
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SW-NE (South West - North East) and SE-NW (South East - North West), with a more representative 

average speed of 2.09m/s at the Parakou station. 

Figure 9 details the monthly wind rose for each station in order to contrast it with the average monthly 

numbers of flashes. Figure 10 displays the average monthly numbers of flashes for the study period. 

The evolution of the winds is identical for the three stations. From March to October the dominant 

direction is SN and contrasts with the monthly average number of flashes. Indeed, the average number 

of flashes increases from March to October as well. Likewise, the percentage of winds in September is 

at its maximum as is the average number of flashes.  

 

 
Figure 8. Compass rose obtained from the data of each synoptic station. 

     

 
Figure 9. Compass rose of the monthly data for each station. 

 

 

3.3. Modelling 

3.3.1. Linear regression 

The correlation coefficient of the two sets of variables is determined per station and the nullity test of 

the coefficient to show that it is significant as summarized in Table 2. This coefficient is approximately 

0.9 for the Natitingou and Parakou stations and 0.75 for Kandi. 
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Figure 10. Monthly average of the number of flashes during the study period. 

 

Table 2. Results of the nullity test of the correlation coefficient by station. 

Station Result of the nullity test  

Kandi cor = 0.7491992   p-value = 0.003201     interval: 0.3375564 - 0.9202906 

Natitingou horn = 0.8955086   p-value = 3.498e-05 interval: 0.6800860 - 0.9685832 

Parakou horn = 0.9035666   p-value = 2.286e-05 interval: 0.7021461 - 0.9710919 
 

Figure 11 shows for each station that a significant autocorrelation is present for lag 1, i.e. between the 

residuals of one line of the data table and those of the next line. The results of the Durbin-Watson test, 

on the other hand, summarised in Table 3, show that there is no significant autocorrelation between the 

residuals of one row of the data table and those of the next row because the p-values are higher than 

0.05. The independence of the residuals can be accepted. 

 
Figure 11. Autocorrelation analysis plot of residuals per station. 

Figure 12 gives for each synoptic station, four graphs for the analysis of linearity (Residual vs Fitted); 

residue normality (Normal Q-Q) and residue homogeneity (Scale-Location).  The analysis of these 

graphs shows that the normality is globally satisfactory in Parakou, unsatisfactory in Natitingou and very 

little in Kandi. In the same order, the homogeneity of the residues and the linearity of the model should 
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be noted. These observations are reinforced by statistical tests. The Jarque and Bera test does not allow 

to conclude to the non-normality of the errors as shown in Table 4. Similarly, the Shapiro test does not 

reject the normality of the residuals for both models, again according to Table 4.  
 

Table 3. Results of the Durbin-Watson test by station. 

Station Result of the Durbin-Watson test  

lag  Autocorrelation D-W Statistic p-value 

Kandi 1 0.3007709 1.312228 0.11 

Natitingou 1 -0.1579085 2.089957 0.88 

Parakou 1 -0.06098996 1.927588 0.708 
 

 
Figure 12. Analytical plot of normality and homogeneity of residues per station. 

Table 4. Residue normality test result.  

Results of the Jarque and Bera test 

Station Linear regression Polynomial regression 

Kandi X-squared = 0.35616, p-value = 0.8369 X-squared = 0.5122,p-value = 0.7741 

Natitingou X-squared = 0.382, p-value = 0.8261 X-squared = 0.35864,p-value = 0.8358 

Parakou X-squared = 0.42966, p-value = 0.8067 X-squared = 0.83217,p-value = 0.6596 

Result of the test of Shapiro - Wilk 

Station Linear regression Polynomial regression 

Kandi W = 0.95689, p-value = 0.7053 W = 0.94078, p-value = 0.4671 

Natitingou W = 0.96555, p-value = 0.8361 W = 0.95344, p-value = 0.6512 

Parakou W = 0.98584, p-value = 0.9967 W = 0.95313, p-value = 0.6464 
 

The Breusch-Pagan test, as shown in Table 5, accepts the assumption of homogeneity of the residuals. 



M. W.  Onah et al. / Arab. J. Chem. Environ. Res. 08(2) (2021) 159-180                                                                  172                                                                       

 

AJCER 

Figure 13 shows the least-squares regression line with the confidence interval on the scatterplot of the 

mean number of flashes as a function of the mean surface wind speed for the three stations. It shows the 

regression parameters, the coefficient of determination and the p-value. 

The overall evaluation of the model shows that it is highly significant as the p-value is well below 1% 

for all stations. The interpretation of the coefficients begins by determining their significance. The 

coefficients are also highly significant except in Kandi for β0.  The p-value of the β0 student t-test is 

0.4034; 0.0148 and 0.00386 respectively at Kandi, Natitingou and Parakou stations. Similarly, the p-

value of the student t-test of β1 is 0.0032; 3.5e-05 and 2.29e-05 respectively at Kandi, Natitingou and 

Parakou stations. This coefficient is very significant at each station. Interpretation is therefore possible.  

This coefficient is positive at each station. When the average speed increases by 1m/s the average number 

of flashes increases by at least 8400. The quality of the model which is assessed from the determination 

coefficient R² is appreciable for two stations. The adjusted determination coefficient is 0.5214; 0.7839 

and 0.7997 respectively in Kandi, Natitingou and Parakou. As the adjusted R² is not higher than 85%, 

no problem, especially endogeneity, can be raised. Thus the fit between the model and the observed data 

is very strong. At Kandi station, 56.13% of the variability in the mean number of flashes is explained by 

the mean surface wind speed; 80.19% at Natitingou and 81.64% at Parakou.  

 
Figure 13. Representation of the least-squares regression line with the confidence interval on the scatterplot of the mean 

number of flashes as a function of the mean surface wind speed of the three synoptic stations in the study area. 
 

3.3.2. Polynomial regression 

The search for a better link suggests exploring a second model. This is how polynomial regression is 

examined.  As in the case of linear regression, the analysis of the residuals is done in order to proceed 

with the interpretation of the coefficients. Figure 14 shows the plots for the analysis of linearity, 

normality and homogeneity of the residuals. Tables 4 and 5 provide the results of statistical tests on the 

assumptions of normality and homogeneity of the residuals. These assumptions cannot be rejected. 

Figure 15 shows the fit curve with the confidence interval on the scatterplot of the mean number of 
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flashes as a function of the mean surface wind speed for the three stations. It shows the regression 

parameters, the coefficient of determination and the p-value. The overall evaluation of the model shows 

that it is highly significant, especially the p-value is much lower than 1% at two stations. The coefficients 

are not significant. The interpretation is therefore delicate. The adjusted determination coefficient is 

0.4761; 0.8148 and 0.8134 respectively in Kandi, Natitingou and Parakou. Here again, the adjusted R² 

is not higher than 85%, no problem, notably endogeneity, can be raised. Thus, the fit between the model 

and the observed data is very strong.  
 

 
Figure 14. Normality and homogeneity of residues per station. 

 

Table 5. Residue homogeneity test result.  

Result of the Breusch-Pagan test 

Station Linear regression Polynomial regression 

Kandi Chisquare = 0.6494217, p = 0.42032 Chisquare = 0.5203733, p = 0.47068 

Natitingou Chisquare = 2.178342,p = 0.13997 Chisquare=0.0001117762,p=0.99156 

Parakou Chisquare = 0.9910194, p = 0.31949 Chisquare = 1.261368,p = 0.26139 

 

At Kandi station, 56.34% of the variability in the mean number of flashes is explained by the mean 

surface wind speed; 84.57% at Natitingou and 84.45% at Parakou. It should be noted that the 

observations did not vary too much at Kandi station. 

 

3.3.3. Comparison of the two models 

In order to compare the adjustments of these two models, F-test is calculated. It gives respectively 0.048; 

2.8369; 1.8035 to Kandi, Natitingou and Parakou with a respective p-value of 0.831; 0.123; 0.209. It 
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should be noted that all the p-values are higher than 0.05, the null hypothesis, which specifies that the 

adjustments of the two models are equal, is accepted. Thus the fit of the polynomial regression model of 

degree 2 is not significantly better than that of the linear regression model. However its coefficient of 

determination is higher. 
 

 
Figure 15. Adjustment curve with confidence and prediction intervals on the scatterplot of the mean number of flashes as 

a function of the mean surface wind speed of the three synoptic stations in the study area. 
 

Conclusion 

A concordance between the data collected by the synoptic stations is noted despite the record of missing 

values at the Natitingou station and a slight discrepancy at the Kandi station. Graphical analysis of the 

raw data suggested some relationship between the average number of lightning strikes and the average 

surface wind speed. This relationship is confirmed by statistical analysis of the data. Linear or 

polynomial regression models resulted in the same description of the relationship between the mean 

number of lightning strikes and the mean surface wind speed. However, the coefficient of determination 

is higher with polynomial regression. A correlation of nearly 90% is significantly established between 

the data. All other things being equal, when the mean surface wind speed increases by 1m/s, the mean 

number of lightning flashes increases by at least 8400. More than 80% of the variability in the mean 

number of flashes is explained by the mean surface wind speed. These results are in agreement with 

previous studies which have shown that thunderstorm activity is linked to the orography of the area and 

therefore to the uplift of the surface winds. 
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