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Abstract 
 
An eco-friendly ultrasound-assisted procedure for the preparation of twenty functionalized pyridinium ionic 
liquids (ILs) 1-20 is described. The characterization of the newly compounds is confirmed by 1H NMR, 13C 
NMR, 11B NMR, 19F NMR, 31P NMR and mass analysis. All synthesized compounds were screened for some 
applications, namely, antimicrobial activity and the results are very promising. Preliminary structure activity 
relationship (SAR) studies have been performed to identify the relation between molecular structure and 
activity. In silico Analysis of ionic liquids and/or salts was carried out based on ADME, Lipinski rule, drug 
likeness, toxicity profiles and other physico-chemical properties. All compounds were safe in toxicity profile 
and computed LD50 values were in accepted range (2.63–2.87 mol/kg). In silico data has revealed that all ionic 
liquids and/or salts were in good agreement in term of bioavailability. 
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1.! Introduction 

Ionic liquids (ILs) have recently emerged as an alternative to volatile organic compounds (VOCs) 

[1-3]. They are synthesized from an anion and an organic cation, such as imidazolium, pyrolidinium or 

pyridinium and are good solvents that readily dissolve many organic, inorganic and organometallic 

compounds. They also have many advantageous properties, such as negligible vapor pressure, 

stability at high temperatures, a low melting point and high ionic conductivity [4].  

ILs have been used in organic synthesis [5,6], polymer science [7], as media for the 

electrodeposition of metals [8,9], in electrochemistry [10-12], supercapacitors [13], solar cells [14]. 

fuel cells [15] and for their corrosion-resistant behavior [16,17]. ILs have also recently been studied as 

potent antimicrobial agents [18,19]. 

 Green procedures using ultrasound or microwave and solvent-free conditions are recommended 

[20,21]. Such conditions require less time and give improved yields [22,23]. 

Following on from our work on the synthesis of ILs [24-25], we now report an efficient green 

method for the preparation of novel pyridinium-based ionic liquids using ultrasound. 

 

2.! Materials and methods 

2.1.! Experimental 

All new compounds were synthesized and characterized by 1H NMR, 13C NMR, 11B NMR, 19F 

NMR, 31P NMR. 1H NMR (400 MHz), 13C NMR (100 MHz), 11B NMR (128 MHz), 19F NMR, (376.5 

MHz) and 31P NMR (162 MHz), spectra were measured in DMSO or D2O at room temperature at 

400MHz. Chemical shifts (d) were reported in ppm using tetramethylsilane (TMS), as an internal 

standard. The ultrasound-assisted reactions were performed using a high intensity ultrasonic processor 

SUB Aqua 5 Plus-Grant with temperature controller (750 W), microprocessor controlled-2004, the 

ultrasonic frequency of the cleaning bath used equal 25 KHz. 

 

2.2.!  Synthesis 

2.2.1.!General procedure for the preparation of pyridinium ionic liquids 1-5 using conventional method 

4-(dimethylamino)pyridine (1eq) and an alkyl halide(1.1eq)  were added to toluene and stirred at 80 °C 

for 18 h. The reaction was deemed complete when oil or a solid separated from the initial clear and 

homogenous mixture. Unreacted starting materials and solvent were removed by extraction or 

filtration. The pyridinium salt was then washed with ethyl acetate and dried in vacuo to remove all 

VOCs. 
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2.2.2.! General procedure for the synthesis of pyridinium tetrafluoroborates, 

hexafluorophosphates or trifluoroacetates 6-20 using conventional method: 

To solution of pyridinium ionic liquids 1-5 (1eq) in dichloromethane was added sodium 

tetrafluoroborate, potassium hexafluorophosphate or sodium trifluoroacetate (1.2eq). The mixture was 

stirred at 70◦C for 3 h.  The solid metal halide was removed by filtration of mixture. The desired ionic 

liquids were obtained with excellent yields after the evaporation of dichloromethane. 

 

2.2.3.! General procedure for the preparation of pyridinium halides 1-5 under ultrasound 

irradiation: 

4-(dimethylamino)pyridine (1 eq) and an alkyl halide (1 eq) were placed in a closed vessel and 

exposed to irradiation for 5 h at RT in a sonicator. The product was then isolated and purified as 

described in the previous procedure. 

 

2.2.4.! General procedure for the preparation of pyridinium tetrafluoroborates, 

hexafluorophosphates or trifluoroacetates 6-20 under ultrasound irradiation: 

Pyridinium ionic liquids 1-10 (1 eq) and NaBF4, KPF6 or CF3CO2Na, (1 eq) were placed in a closed 

vessel and exposed to irradiation for 45 min at RT in a sonicator. The product was then collected as 

described in the previous procedure. 

 

2.3.!  Characterization 

4-(dimethylamino)-1-ethylpyridinium bromide 1: 

White crystals, Mp 130-132 ºC,
 1H NMR (CDCl3, 400 MHz,): δ = 1.36 (t, 3H), 3.08 (s, 6H), 4.06 (t, 

2H), 6.78 (d, 2H), 7.94 (d, 2H); 13C NMR (CDCl3, 100 MHz,): δ = 15.2 (CH3), 39.6 (CH3), 52.9 (CH2), 

107.6 (CH), 140.9 (CH), 156.2 (C); LCMS (M-Cl) 151.2 found for C9H15N2
+. 

4-(dimethylamino)-1-propylpyridinium bromide 2: 

White crystals, Mp 100-102 ºC,
 1H NMR (D2O, 400 MHz,): δ = 0.79 (t, 3H), 1.75 (sixtet, 2H), 3.08 (s, 

6H), 3.99 (t, 2H), 6.77 (d, 2H), 7.91 (d, 2H); 13C NMR (D2O, 100 MHz,): δ = 9.8 (CH3), 23.6 (CH2), 

39.4 (CH3), 59.1 (CH2), 107.5 (CH), 141.3 (CH), 156.2 (C); LCMS (M-Br) 165.2 found for C10H17N2
+. 

  

1-butyl-4-(dimethylamino)pyridinium bromide 3: 

White crystals, Mp 190-195 ºC,
 1H NMR (D2O, 400 MHz,): δ = 0.82 (t, 3H), 1.22 (quintet, 2H), 1.72 

(sixtet, 2H), 3.10 (s, 6H), 4.04 (t, 2H), 6.78 (d, 2H), 7.93 (d, 2H); 13C NMR (D2O, 100 MHz,): δ = 12.8 

(CH3), 18.7 (CH2), 32.1 (CH2), 39.4 (CH2), 57.4 (CH2), 107.5 (CH), 141.4 (CH), 156.2 (C); LCMS 

(M-Br) 179.2 found for C11H19N2
+. 
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4-(dimethylamino)-1-pentylpyridinium bromide 4: 

White crystals, Mp 210-215 ºC,
 1H NMR (D2O, 400 MHz,): δ = 0.74 (t, 3H), 1.18 (m, 4H), 1.73 (sixtet, 

2H), 3.09 (s, 6H), 4.02 (t, 2H), 6.77 (d, 2H), 7.91 (d, 2H); 13C NMR (D2O, 100 MHz,): δ = 13.1 (CH3), 

21.4 (CH2), 27.4 (CH2), 29.7 (CH2), 39.4 (CH3) 57.6 (CH2), 107.5 (CH), 141.3 (CH), 156.2 (C); 

LCMS (M-Br) 193.3 found for C12H21N2
+. 

4-(dimethylamino)-1-hexylpyridinium iodide 5: 

White crystals, Mp 170-172 ºC,
 1H NMR (D2O, 400 MHz,): δ = 0.66 (t, 3H), 1.09 (m, 6H), 1.65 (sixtet, 

2H), 3.00 (s, 6H), 3.93 (t, 2H), 6.67 (d, 2H), 7.80 (d, 2H); 13C NMR (D2O, 100 MHz,): δ = 13.1 (CH3), 

21.7 (CH2), 24.8 (CH2), 29.8 (CH2), 30.3 (CH2), 39.4 (CH3) 57.6 (CH2), 107.4 (CH), 141.3 (CH), 

156.2 (C); LCMS (M-I) 207.3 found for C13H23N2
+. 

4-(dimethylamino)-1-ethylpyridinium tetrafluoroborate 6: 

Yellow clear crystals, Mp 55-58 ºC,
 1H NMR (CDCl3, 400 MHz,): δ = 1.38 (t, 3H), 3.18 (s, 6H), 4.18 

(t, 2H), 7.02 (d, 2H), 8.30 (d, 2H); 13C NMR (CDCl3, 100 MHz,): δ = 16.0 (CH3), 39.6 (CH3), 52.0 

(CH2), 107.7 (CH), 141.6 (CH), 156.3 (C); 19F NMR (CDCl3, 376.5 MHz): δ = -148.32; 11B NMR 

(CDCl3, 128 MHz): δ = -1.30; LCMS (M-BF4) 151.2 found for C9H15N2
+. 

4-(dimethylamino)-1-ethylpyridinium hexafluorophosphate 7: 

White crystals, Mp 70-72 ºC,
 1H NMR (DMSO, 400 MHz,): δ = 1.30 (t, 3H), 3.18 (s, 6H), 4.18 (t, 2H), 

7.02 (d, 2H), 8.29 (d, 2H); 13C NMR (DMSO, 100 MHz,): δ = 16.0 (CH3), 39.6 (CH3), 52.0 (CH2), 

107.7 (CH), 141.6 (CH), 155.8 (C); 19F NMR (DMSO, 376.5 MHz): δ = -71.11; 31P NMR (DMSO, 162 

MHz): δ = -144.19 (sep, J = 712.8 Hz); LCMS (M-PF6) 151.2 found for C9H15N2
+. 

4-(dimethylamino)-1-ethylpyridinium trifluoroacetate 8: 

Waxy,
 1H NMR (DMSO, 400 MHz,): δ = 1.37 (t, 3H), 3.18 (s, 6H), 4.20 (t, 2H), 7.03 (d, 2H), 8.34 (d, 

2H); 13C NMR (DMSO, 100 MHz,): δ = 16.0 (CH3), 39.6 (CH3), 52.0 (CH2), 107.7 (CH), 140.9 (CH), 

155.8 (C); 19F NMR (DMSO, 376.5 MHz): δ = -73.47; LCMS (M-CF3CO2) 151.2 found for C9H15N2
+. 

4-(dimethylamino)-1-propylpyridinium tetrafluoroborate 9: 

White crystals, Mp 75-77 ºC,
 1H NMR (DMSO, 400 MHz,): δ = 0.84 (t, 3H), 1.77 (sixtet, 2H),  3.19 (s, 

6H), 4.13 (t, 2H), 7.03 (d, 2H), 8.29 (d, 2H); 13C NMR  (DMSO, 100 MHz,): δ = 10.1 (CH3), 23.6 

(CH2),  39.4 (CH3), 59.0 (CH2), 107.5 (CH), 141.9 (CH), 155.8 (C); 19F NMR (DMSO, 376.5 MHz): δ 

= -148.32; 11B NMR (DMSO, 128 MHz): δ = -1.27; LCMS (M- BF4) 165.2 found for C10H17N2
+. 

4-(dimethylamino)-1-propylpyridinium hexafluorophosphate 10: 

White crystals, Mp 75-77 ºC,
 1H NMR (DMSO, 400 MHz,): δ = 0.84 (t, 3H), 1.78 (sixtet, 2H), 3.19 (s, 

6H), 4.12 (t, 2H), 7.02 (d, 2H), 8.27 (d, 2H); 13C NMR (DMSO, 100 MHz,): δ = 10.1 (CH3), 23.6 

(CH2), 39.4 (CH3), 58.0 (CH2), 107.5 (CH), 141.9 (CH), 155.8 (C); 19F NMR (DMSO, 376.5 MHz): δ 
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= -71.10; 31P NMR (DMSO, 162 MHz): δ = -144.21 (sep, J = 712.8 Hz); LCMS (M- PF6) 165.2 found 

for C10H17N2
+. 

4-(dimethylamino)-1-propylpyridinium trifluoroacetate 11: 

Oil,
 1H NMR (DMSO, 400 MHz,): δ = 0.81 (t, 3H), 1.74 (sixtet, 2H), 3.18 (s, 6H), 4.17 (t, 2H), 7.03 

(d, 2H), 8.37 (d, 2H); 13C NMR (DMSO, 100 MHz,): δ = 10.0 (CH3), 23.6 (CH2), 39.4 (CH3), 57.8 

(CH2), 107.5 (CH), 141.9 (CH), 155.7 (C); 19F NMR (DMSO, 376.5 MHz): δ = -71.10; LCMS (M-

CF3CO2) 165.2 found for C10H17N2
+. 

1-butyl-4-(dimethylamino)pyridinium tetrafluoroborate 12: 

White crystals, Mp 60-62 ºC,
 1H NMR (D2O, 400 MHz,): δ = 0.88 (t, 3H), 1.22 (quintet, 2H), 1.73 

(sixtet, 2H), 3.18 (s, 6H), 4.19 (t, 2H), 7.05 (d, 2H), 8.33 (d, 2H); 13C NMR (D2O, 100 MHz,): δ = 13.3 

(CH3), 18.6 (CH2), 32.2 (CH2), 39.6 (CH2), 56.3 (CH2), 107.5 (CH), 141.4 (CH), 156.2 (C); 19F NMR 

(DMSO, 376.5 MHz): δ = -149.29; 11B NMR (DMSO, 128 MHz): δ = -1.30; LCMS (M-BF4) 179.2 

found for C11H19N2
+. 

1-butyl-4-(dimethylamino)pyridinium hexafluorophosphate 13: 

White crystals, Mp 105-110 ºC,
 1H NMR (D2O, 400 MHz,): δ = 0.90 (t, 3H), 1.23 (quintet, 2H), 1.74 

(sixtet, 2H), 3.18 (s, 6H), 4.15 (t, 2H), 7.01 (d, 2H), 8.28 (d, 2H); 13C NMR (D2O, 100 MHz,): δ = 13.2 

(CH3), 18.6 (CH2), 32.2 (CH2), 39.6 (CH2), 56.4 (CH2), 107.6 (CH), 141.8 (CH), 155.7 (C); 19F NMR 

(DMSO, 376.5 MHz): δ = -71.10; 31P NMR (DMSO, 162 MHz): δ = -144.21 (sep, J = 712.8 Hz); 

LCMS (M-PF6) 179.2 found for C11H19N2
+. 

1-butyl-4-(dimethylamino)pyridinium trifluoroacetate 14: 

Waxy, 1H NMR (D2O, 400 MHz,): δ = 0.87 (t, 3H), 1.20 (quintet, 2H), 1.71 (sixtet, 2H), 3.16 (s, 6H), 

4.12 (t, 2H), 6.98 (d, 2H), 8.25 (d, 2H); 13C NMR (D2O, 100 MHz,): δ = 12.4 (CH3), 17.8 (CH2), 31.4 

(CH2), 38.8 (CH2), 55.4 (CH2), 106.8 (CH), 141.1 (CH), 156.8 (C); 19F NMR (DMSO, 376.5 MHz): δ = 

-74.32; LCMS (M-CF3CO2) 179.2 found for C11H19N2
+. 

4-(dimethylamino)-1-pentylpyridinium tetrafluoroborate 15: 

White crystals, Mp 135-138 ºC,
 1H NMR (D2O, 400 MHz,): δ = 0.76 (t, 3H), 1.20 (m, 4H), 1.75 (sixtet, 

2H), 3.11 (s, 6H), 4.04 (t, 2H), 6.79 (d, 2H), 7.93 (d, 2H); 13C NMR (D2O, 100 MHz,): δ = 12.9 (CH3), 

20.7 (CH2), 26.7 (CH2), 29.1 (CH2), 39.4 (CH3) 55.7 (CH2), 106.8 (CH), 141.1 (CH), 154.9 (C); 19F 

NMR (DMSO, 376.5 MHz): δ = -149.13; 11B NMR (DMSO, 128 MHz): δ = -2.08; LCMS (M-BF4) 

193.3 found for C12H21N2
+. 

4-(dimethylamino)-1-pentylpyridinium hexafluorophosphate 16: 

White crystals, Mp 72-72 ºC,
 1H NMR (D2O, 400 MHz,): δ = 0.77 (t, 3H), 1.22 (m, 4H), 1.78 (sixtet, 

2H), 3.14 (s, 6H), 4.04 (t, 2H), 6.81 (d, 2H), 7.96 (d, 2H); 13C NMR (D2O, 100 MHz,): δ = 16.3 (CH3), 
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24.1 (CH2), 30.1 (CH2), 32.5 (CH2), 39.4 (CH3) 59.2 (CH2), 110.2 (CH), 144.5 (CH), 158.4 (C); 19F 

NMR (DMSO, 376.5 MHz): δ = -68.49; 31P NMR (DMSO, 162 MHz): δ = -141.53 (sep, J = 712.8 Hz); 

LCMS (M-PF6) 193.3 found for C12H21N2
+. 

4-(dimethylamino)-1-pentylpyridinium trifluoroacetate 17: 

White crystals, Mp 72-72 ºC,
 1H NMR (D2O, 400 MHz,): δ = 0.77 (t, 3H), 1.22 (m, 4H), 1.78 (sixtet, 

2H), 3.14 (s, 6H), 4.04 (t, 2H), 6.81 (d, 2H), 7.96 (d, 2H); 13C NMR (D2O, 100 MHz,): δ = 16.3 (CH3), 

24.1 (CH2), 30.1 (CH2), 32.5 (CH2), 39.4 (CH3) 59.2 (CH2), 110.2 (CH), 144.5 (CH), 158.4 (C); 19F 

NMR (DMSO, 376.5 MHz): δ = -68.49; LCMS (M-CF3CO2) 193.3 found for C12H21N2
+. 

4-(dimethylamino)-1-hexylpyridinium tetrafluoroborate 18: 

White crystals, Mp 125-128 ºC,
 1H NMR (D2O, 400 MHz,): δ = 0.86 (t, 3H), 1.26 (m, 6H), 1.76 (sixtet, 

2H), 3.21 (s, 6H), 4.20 (t, 2H), 7.05 (d, 2H), 8.34 (d, 2H); 13C NMR (D2O, 100 MHz,): δ = 13.7 (CH3), 

21.8 (CH2), 25.0 (CH2), 30.2 (CH2), 30.5 (CH2), 39.4 (CH3) 56.5 (CH2), 107.6 (CH), 141.9 (CH), 

155.7 (C); 19F NMR (DMSO, 376.5 MHz): δ = -148.33; 11B NMR (DMSO, 128 MHz): δ = -1.28; 

LCMS (M-BF4) 207.3 found for C13H23N2
+. 

4-(dimethylamino)-1-hexylpyridinium hexafluorophosphate 19: 

White crystals, Mp 130-132 ºC,
 1H NMR (D2O, 400 MHz,): δ = 0.84 (t, 3H), 1.25 (m, 6H), 1.75 (sixtet, 

2H), 3.19 (s, 6H), 4.17 (t, 2H), 7.03 (d, 2H), 8.32 (d, 2H); 13C NMR (D2O, 100 MHz,): δ = 13.7 (CH3), 

21.8 (CH2), 25.0 (CH2), 30.2 (CH2), 30.5 (CH2), 39.7 (CH3) 56.6 (CH2), 107.6 (CH), 141.9 (CH), 

155.7 (C); 19F NMR (DMSO, 376.5 MHz): δ = -71.14; 31P NMR (DMSO, 162 MHz): δ = -144.20 (sep, 

J = 712.8 Hz); LCMS (M-PF6) 207.3 found for C13H23N2
+. 

4-(dimethylamino)-1-hexylpyridinium trifluoroacetate 20: 

Yellow clear crystals, Mp 150-153 ºC,
 1H NMR (D2O, 400 MHz,): δ = 0.85 (t, 3H), 1.26 (m, 6H), 1.76 

(sixtet, 2H), 3.19 (s, 6H), 4.17 (t, 2H), 7.04 (d, 2H), 8.32 (d, 2H); 13C NMR (D2O, 100 MHz,): δ = 13.7 

(CH3), 21.8 (CH2), 25.0 (CH2), 30.2 (CH2), 30.5 (CH2), 39.7 (CH3) 56.6 (CH2), 107.6 (CH), 141.9 

(CH), 155.7 (C); 19F NMR (DMSO, 376.5 MHz): δ = -73.47; LCMS (M-CF3CO2) 207.3 found for 

C13H23N2
+. 

 

3.!  Results and discussion 

3.1.!Chemistry 

In continuation to our previous work dealing with the developing of novel functionalized ionic 

liquids [25-27], in this work we aimed to synthesize a new variety of pyridinium-based ionic liquids 

under both conventional and ultrasound irradiation methods. To the best of our knowledge, only some 

compounds has been previously reported by conventional methods [28,29], their preparation under 

ultrasound irradiation has never been disclosed. Initially, pyridinium-based derivatives (1–5) were then 
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prepared with the conventional method, through the N-alkylation of 4-(dimethylamino)pyridine with 

the appropriate alkyl bromide in toluene at 80 °C for 18 h (Scheme 1).  

 
Scheme 1.  N-alkylation of 4-(dimethylamino)pyridine under conventional preparation (CP) and ultrasonic 
irradiation conditions (US). CP: toluene, 80 °C, 18 h; US: toluene, RT, 5 h. 
 

On the other hand, the ultrasound–assisted preparation of pyridinium-based ionic liquids 1-5, 

already synthesized by conventional methods, was explored further with the objective of shortening 

the reaction time. The structures of all the synthesized ILs and/or salts were obtained with good yields 

(Table 1) and confirmed by 1H NMR, 13C NMR, and FT-IR. 
 

Table 1 Different entries, reaction conditions and reaction yields for the synthesis of pyridinium-based ionic 
liquids 1-5 using conventional preparation (CP) and under ultrasound irradiation (US). 
 

Compound RX 

Yield (%) 
N-Alkylation 

(first step) 
US CP 

1 CH3CH2Br 88 77 
2 CH3(CH2)2Br 87 78 
3 CH3(CH2)3Br 89 76 
4 CH3(CH2)4Br 88 78 
5 CH3(CH2)5I 90 83 

 
The introduction of anions such as tetrafluoroborate, hexafluorophosphate or trifluoroacetate 

was carried out by an anion exchange reaction (Scheme 2); a high final yield was obtained using this 

conventional method.   
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Scheme 2. Anion metathesis using conventional preparation (CP) and ultrasonic irradiation conditions. 
(CP): MY, dichloromethane, 70 °C, 3 h; US: dichloromethane, RT, 45 min. M = Na, K. 

 
The anion exchange metathesis is easily performed under ultrasonic irradiation. Results in 

Table 2 showed that very good yields were obtained within very short reaction times, with no effect of 

the anion types used in this reaction on the yields. 
 

Table 2 Different entries, reaction conditions and reaction yields for the anion metathesis using conventional preparation 
(CP) and under microwave irradiation (US). 
 

Compound R X- M-Y+ 
Yield (%) 

Anion metathesis (second step) 
US CP 

6 
CH3CH2 Br - 

NaBF4 98 95 
7 KPF6 96 93 
8 NaO2CF3 97 92 
9 

CH3(CH2)2 Br - 
NaBF4 97 93 

10 KPF6 97 94 
11 NaO2CF3 97 92 
12 

CH3(CH2)3 Br - 
NaBF4 95 95 

13 KPF6 98 94 
14 NaO2CF3 97 93 
15 

CH3(CH2)4 Br - 
NaBF4 96 94 

16 KPF6 97 95 
17 NaO2CF3 97 92 
18 

CH3(CH2)5 I - 
NaBF4 98 93 

19 KPF6 97 93 
20 NaO2CF3 96 91 

 
 

Anion exchange approach is proved without ambiguity by 11B NMR, 19F NMR and 31P NMR since 

their spectra contained peaks just about δB -1 and δF -148 ppm for distinctive B or F in BF4 and peaks 

just about δF -71 and δP -144 ppm for distinctive F or P in PF6. 
 

3.2.! Antimicrobial activity 

The main goal of the present study is to test the antibacterial activities of some selected newly 

synthesized ionic liquids. Hence, the water soluble compounds 1-20 were screened for their 

antibacterial activity against a number of clinical bacterial species including; Staphylococcus aureus, 
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Staphylococcus epidermidis, Escherichia coli, Enterobacter, and Acinetobacter baumannii. 

Antibacterial activity was evaluated in comparison with two standard antibiotics; Vancomycin and 

Rifampicin. In general, all compound showed antibacterial activities with different spectra. 

Compounds 3 and 4 were the most potent against Enterobacter, while compounds 5 was most potent 

against S. aureus. Compounds 3, 4, 11-17 and 20 were most effective against all bacterial strains tested 

(Table 3). 
 

Table 3. Antibacterial activity and spectrum of the ILs 1-20 

 

Test 
compounds 

S. aureus S.  epidermidis E. coli Enterobacter A. baumannii 
IZ 

(mm) 
MIC 

(µg/mL) 
IZ 

(mm) 
MIC 

(µg/mL) 
IZ 

(mm) 
MIC 

(µg/mL) 
IZ 

(mm) 
MIC 

(µg/mL) 
IZ 

(mm) 
MIC 

(µg/mL) 
1 - - - - - - 3.5 8 1.7 16 
2 0.8 64 - - 1.8 32 4 8 2.6 8 
3 2.5 8 1.1 32 2.2 8 4.6 4 3 8 
4 2.4 8 2 8 2.2 8 5 4 3 8 
5 3.5 4 - - 0.6 64 3.5 8 0.8 64 
6 - - - - - - 2.2 32 0.8 32 
7 0.7 64 - - - - 2.8 32 1.2 64 
8 0.5 128 0.8 64 - - 2.7 32 1 32 
9 0.6 128 - - 2 16 2.6 16 1.8 32 

10 0.8 64 - - 1.4 32 3.5 8 2.8 8 
11 0.9 64 0.5 128 1.8 16 3.2 8 2.9 8 
12 1.8 16 0.8 64 1.7 16 3.6 8 2.4 16 
13 1.7 16 1.2 32 1.6 16 3.8 8 2 16 
14 2 16 1.0 32 1.9 16 4.0 8 2.9 8 
15 2.0 16 1.2 32 1.6 32 4.0 8 2.2 16 
16 1.9 16 1.4 32 1.8 32 4.1 8 2.6 16 
17 2.8 8 1.9 32 2.0 16 4.8 4 2.5 16 
18 2.8 8 - - - - 2.7 16 - - 
19 2.9 8 0.7 128 - - 3.0 8 0.4 128 
20 2.7 8 0.6 128 0.5 128 2.9 16 0.6 128 

Vancomycin 1.5 16 2.3 8 1.6 16 - - 1.2 32 
Rifampicin 3 4 3.5 4 0.8 32 0.7 32 1.2 16 

 
3.2.1   Antibacterial Spectrum of the compounds 1-20 

The antimicrobial activity was initially estimated in terms of inhibition zone (IZ) measurements 

by agar disc diffusion method. The test was performed by subculturing 24 h fresh bacterial cultures 

onto the surface of Muller–Hinton agar plates. The antibacterial activity was assayed using filter paper 

discs (6 mm i.d.) loaded with 10 µg of tested compound. Loaded discs were transferred onto the centre 

of inoculated Petri-plates which were then maintained for 2 h in a refrigerator at 4 °C to allow for the 

diffusion of the bioactive compound. The diameter of the inhibition zone was measured (in mm) after 

24 h incubation at 37 °C. Sterile distilled water was used as a control. All compounds were tested 
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against clinical samples of Staphylococcus aureus, Bacillus cereus, Acinetobacter baumannii, 

Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa as test strains. 

The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) 

determined by CLSI microdilution-based method [30] were used to evaluate antibacterial potentials. 

Test compound was dissolved in sterile, distilled water and diluted to a final concentration of 512 

µg/mL inMueller-Hinton broth (Becton Dickinson, USA) [31]. Two-fold serial dilutions were prepared 

in a 96-well microtiter plate. Bacterial suspension containing approximately 1 × 108 CFU/mL were 

prepared from 24 h agar plates with Mueller Hinton broth. Aliquots of 100 µL of each bacterial 

suspension was mixed with 100 µL serially diluted tested compound in microtiter plate [32]. 

Uninoculated wells were prepared as control samples. Plates were incubated at 37 °C for 24 h. The 

MIC was defined as the lowest concentration of test compound producing no visible growth. The MBC 

was determined by transfer of aliquots from wells containing no growth onto nutrient agar plates and 

tested for colony formation upon subculturing. All experiments were performed in triplicate. 

 
4. Pharmacology and toxicity inhibition prediction of ILs and/or salts 1-20 
 

4.1! Pharmacology inhibition prediction  

Over the outcome of failure of any drug in clinic stage, ADME-Tox liabilities is necessary to solve 

these problems for design of a core structure of a novel series of molecules able to inhibit the 

production of undesirable metabolites. Comparatively to Lipinski's Rule of Five and Oral 

Bioavailability, in silico physicochemical properties of the synthesized ILs and/or salts as drug 

candidate 1–20, were calculated and summarized in Table 4 show clearly the very high lipophilicity of 

most of the tested ILs necessary to cross blood brain barrier (BBB) easily. In addition, all tested ILs 

displayed TPSA (topological polar surface area) values within acceptable range (3.24–29.54 A°). 

TPSA is an important descriptor which was shown to correlate well with molecular transport through 

membranes [33]. Furthermore, the number of rotatable bonds (n-ROTB), molecular weight, hydrogen 

bond donor/acceptor, were also in satisfactory range [34]. 

 

4.2 In silico pharmacokinetic and bioavailability 

 To qualify the clinical trials, pharmacokinetic and bioavailability studies are required to performed, 

and the results are listed in Tables 5 and 6. Veber’s rule also play good role in term of the oral 

bioavailability measurement of drugs. It's important to mention that the oral bioavailability is marked 

by small molecular weight (less than 500); by the number of rotatable bond (less than 10), by the 

number of hydrogen bond donors and acceptors (less than 12) and by TPSA values (less than 140).  
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Table 4. In silico prediction of physicochemical calculations 

Compd. MW (g/mol) Physicochemical properties Drug likeness 

  TPSA O/NH VIOL VOL  GPC ICM KI NRL PI EN 

1 231 3.24 0 0 184 -0.84 -0.47 -1.05 -1.01 -1.15 -0.63 

2 245 3.24 0 0 201 -0.64 -0.35 -0.93 -0.81 -0.94 -0.50 

3 259 3.24 0 0 217  -0.51 -0.27 -0.80 -0.66 -0.78 -0.37 

4 273 3.24 0 0 234  -0.39 -0.21 -0.67 -0.52 -0.63 -0.27 

5 334 3.24 0 0 257  -0.27 -0.15 -0.55 -0.37 -0.51 -0.20 

6 238 3.24 0 0 214  -0.56 -0.29 -0.64 -0.53 -0.46 -0.22 

7 296 3.24 0 0 213  -0.23 -0.13 -0.45 -0.39 -0.52 -0.08 

8 264 29.54 0 0 225  -0.21 -0.16 -0.43 -0.12 -0.21 -0.09 

9 252 3.24 0 0 231  -0.40 -0.21 -0.55 -0.38 -0.31 -0.13 

10 310 3.24 0 0 230  -010 -0.07 -0.38 -0.26 -0.38 -0.02 

11 278 29.54 0 0 242  -0.11 -0.13 -0.38 -0.03 -0.10 -0.05 

12 266 3.24 0 0 247  -0.29 -0.15 -0.45 -0.26 -0.20 -0.04 

13 324 3.24 0 0 247  -0.03 -0.05 -0.31 -0.16 -0.27 -0.04 

14 292 29.54 0 0 259  -0.05 -0.12 -0.32 -0.04 -0.02 -0.01 

15 280 3.24 0 0 264  -0.19 -0.12 -0.36 -0.15 -0.10 0.02 

16 338 3.24 0 0 264  0.04 -0.04 -0.24 -0.08 -0.18 0.08 

17 306 29.54 0 0 275  0.01 -0.10 -0.27 -0.09 0.04 0.02 

18 294 3.24 0 0 281  -0.13 -0.10 -0.28 -0.08 -0.03 -0.05 

19 352 3.24 0 0 280  0.08 -0.04 -0.18 -0.03 -0.12 -0.09 

20 320 29.54 0 0 292  0.03 -0.10 -0.23 0.12 0.08 0.01 

Vancomyci
n 

1449 530 21 3 1207  -3.94 -3.99 -4.00 -4.01 -3.90 -3.95 

Rifampicin 823 220 6 3 756  -2.10 -3.27 -3.04 -2.89 -1.61 -2.42 

 

In silico calculation of drug score was in acceptance range which is the combination of drug 

likeness, Log P, solubility, molecular weight, and toxicity risk within one useful practical value. The 

tested ILs have a good chance to be a drug candidate if their drug score values are significant. Table 5 

clearly shows that all ILs follow the Lipinski rule and Veber's rule in terms of agreement with the in-

silico bioavailability. ILs 7, 10, 13, 14, 16, 18 and 19 are rejected by the Ghose rule.  
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Table 5 .In silico bioavailability prediction 

Compound No In silico Bioavailability 

Lipinski Ghose Veber Bioavailability score 

1 Yes Yes Yes 0.55 

2 Yes Yes Yes 0.55 

3 Yes Yes Yes 0.55 

4 Yes Yes Yes 0.55 

5 Yes Yes Yes 0.55 

6 Yes Yes Yes 0.55 

7 Yes No, 1 Violation Yes 0.55 

8 Yes Yes Yes 0.55 

9 Yes Yes Yes 0.55 

10 Yes No, 1 Violation Yes 0.55 

11 Yes Yes Yes 0.55 

12 Yes Yes Yes 0.55 

13 Yes No, 1 Violation Yes 0.55 

14 Yes No, 1 Violation Yes 0.55 

15 Yes Yes Yes 0.55 

16 Yes No, 1 Violation Yes 0.55 

17 Yes Yes Yes 0.55 

18 Yes No, 1 Violation Yes 0.55 

19 Yes No, 1 Violation Yes 0.55 

20 Yes Yes Yes 0.55 

Vancomycin No, 3 Violation No, 4 Violation No, 2 Violation 0.17 

Rifampicin No, 3 Violation No, 3 Violation No, 1 Violation 0.17 

 
During the development of a new drug for any disease, an assessment of toxicity risk parameters is 

required to qualify a drug candidate, and low toxicity/ side effects indicate a good therapeutic index for 

any drug. Table 6 shows that the compounds showed satisfactory gastrointestinal absorptions and BBB 

permeability or inhibition to cytochrome P450 isomers (CYP1A2 and CYP2D6). 
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Table 6. In silico pharmacokinetics prediction of 1-20 
 
Compoud 

No 
In silico Pharmacokinetics 

GI 
absorption 

BBB 
permeant 

P-gp CYP1A2 
inhibitor 

CYP2D6 
inhibitor 

Log Kp(skin 
permeation), cm/s 

1 High Yes No No No -6.87 

2 High Yes No No No -6.59 

3 High Yes No No No -6.42 

4 High Yes No No No -6.12 

5 High No No No No -6.19 

6 High Yes No No No -6.03 

7 Low No No No No -5.68 

8 High Yes No No No -6.90 

9 High Yes No No No -5.74 

10 Low No No No No -5.39 

11 High Yes No No No -6.61 

12 High Yes No No No -5.57 

13 Low No No No No -5.22 

14 Low No No No No -5.39 

15 High Yes No No No -5.28 

16 Low No No No No -4.92 

17 High Yes No No No -6.15 

18 High No No No No -4.98 

19 Low No No No No -4.62 

20 High Yes No No No -5.85 

Vancomyci
n 

Low No Yes No No -16.99 

Rifampicin Low No Yes No No -7.44 

GI: Gastro Intestinal; P-gp: P-glycoprotein; BBB: Blood Brain Barrier; CYP1A2: Cytochrome P450 family 1 subfamily A member 2 
(PDB: 2HI4); CYP2D6: Cytochrome P450 family 2 subfamily D member 6 (PDB: 5TFT) 
 
4.3 Log p and inhibitor toxicity prediction 

The hydrophobicity and log P value are related each other because when its value is increasing, the 

drug will be more hydrophobic. When the drug is more hydrophobic, then the drug will be able to 
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circulate longer in our body, because it wouldn't be easy to secrete it. The Table 7 shows all 

synthesized ILs 1–20 showed log P value ranges from 1.13 to 4.47. The mutagenic or carcinogenic 

properties are detected by the toxicity of the compounds based on the functional group similarity with 

mutagenic or carcinogenic ones.  

 

Table 7. In silico screening of toxicity and log p of ILs 1-20 

Compd. AMES 
Toxicity 

Carcinogenecity Rat acute toxicity LD50 (mol/kg) LogP 

1   2.66 2.13 

2   2.66 2.94 

3   2.65 3.19 

4   2.63 3.69 

5   2.64 4.47 

6   2.78 1.13 

7   2.87 1.23 

8   2.87 2.18 

9   2.76 1.63 

10   2.83 1.74 

11   2.83 2.68 

12   2.74 2.19 

13   2.81 2.30 

14   2.83 3.24 

15   2.72 2.69 

16   2.78 2.80 

17   2.80 3.74 

18   2.72 3.20 

19   2.78 3.31 

20   2.79 4.25 

Vancomycin   2.58 0.13 

Rifampicin   2.68 2.62 

:non toxic ;  : toxic 

The result of toxicity analysis of synthesized ILs and/or salts 1–20 presented in Table 7 indicates that 

all the synthesized ILs have no AMES toxicity and carcinogenicity. For further investigation of the in 

vivo antimicrobial activity, computed LD50 doses have been calculated in rat acute toxicity models, 

and the compounds seem to be relatively safe (2.63–2.87 mol/kg). 
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Conclusion 

Collectively, new environmentally friendly functionalized pyridinium-based ionic liquids and/or salts 

were prepared by using ultrasound irradiation. Comparison of CP and US methods afforded a lot of 

advantages and recommendations for the use of the green ultrasound assisted reactions. On the other 

hand, preliminary evaluation of their antimicrobial properties show very interesting and promising 

results. These good results were confirmed by in silico screening which provide the support to 

antimicrobial activity. Physico-chemical evaluation showed good druglikeness and interacted with 

various enzymatic targets. In addition, toxicity analysis has revealed that all compounds were safe for 

mutagenecity and carcinogenicity and computed LD50 values were in accepted range (2.63–2.87 

mol/kg). In addition, all ionic liquids and/or salts have pursued Lipinski rules. In silico Bioavailability 

analysis has demonstrated that all synthesized ionic liquids and/or salts follow Lipinski’s rule and 

Veber rule. 
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